检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:于学洋 迟骋 李淑秋[1,3] 李德瑞 YU Xueyang;CHI Cheng;LI Shuqiu;LI Derui(Institute of Acoustics,Chinese Academy of Sciences,Beijing,100190;University of Chinese Academy of Sciences,Beijing,100049;Key Laboratory of Science and Technology on Advanced Underwater Acoustic Signal Processing,Chinese Academy of Sciences,Beijing,100190)
机构地区:[1]中国科学院声学研究所,北京100190 [2]中国科学院大学,北京100049 [3]中国科学院先进水下信息技术重点实验室,北京100190
出 处:《声学学报》2024年第4期656-663,共8页Acta Acustica
基 金:国家自然科学基金项目(62001469)资助。
摘 要:为强化水声目标特征,提高使用深度神经网络识别水声目标的准确率,提出了一种联合线谱增强与深度神经网络的水声目标识别方法。该方法采用窄带信息增强,将自适应线谱增强滤波器与VGGish神经网络级联,水声信号经过线谱增强后输入网络提取深度特征,之后使用分类器分类。使用实测水声数据集进行测试,对网络提取的水声数据的深度特征集进行主成分分析并降维,使高维深度特征可视化,结果表明线谱增强后得到的深度特征集的紧致性明显提高。该方法在测试数据集上能够实现94.83%的识别准确率,与未进行线谱增强的情况相比提升了5.48%,同时在低信噪比情况下稳定性更好。To enhance the features of underwater acoustic target signals,and improve the performance of underwater acoustic target recognition based on deep neural network,a target recognition method using line enhancement and deep neural network is proposed.This method focuses on the narrowband information enhancement and sets an adaptive line enhancement filter at the front end of the VGGish network.The signals are processed by the line enhancement filter and input into the network to extract deep features,and then these features are classified by a classifier.The effectiveness of the method is verified by the actual underwater acoustic dataset.Principal component analysis is performed on the deep feature set of the underwater acoustic signals,and the results show that the compactness of the deep feature set obtained after line enhancement is significantly improved.The proposed method can obtain a recognition accuracy of 94.83%on the test dataset,which is improved by 5.48%compared to the case without line enhancement,and it is also more robust under the condition of low signal-to-noise ratio.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49