检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李继清[1] 刘洋[1] 张鹏[1,2] 陈景 LI Jiqing;LIU Yang;ZHANG Peng;CHEN Jing(School of Water Resources and Hydropower Engineering,North China Electric Power University,Beijing 102206,China;Guangxi Pingban Hydropower Development Co.,Ltd.,Baise 533000,China)
机构地区:[1]华北电力大学水利与水电工程学院,北京102206 [2]广西平班水电开发有限公司,广西百色533000
出 处:《水力发电学报》2024年第7期30-40,共11页Journal of Hydroelectric Engineering
基 金:国家自然科学基金项目(52179014);国家重点研发计划项目(2017YFC0405906)。
摘 要:为提高径流预报精度,解决径流序列分解后高频分量波动范围大、预报精度差的问题,基于极点对称模态分解法(ESMD)平稳化处理技术将径流序列分解,通过分析不同频率分量特征,择优选取预报方法,结合粒子群优化最小二乘支持向量机(PSO-LSSVM)全局优化和非线性建模能力及适应性强的特点,对高频分量进行预测,利用BP神经网络非线性映射能力和逼近任意非线性函数的优势对中低频分量和趋势分量进行预报,构建了ESMD-PSO-LSSVM-BP组合预报模型,对西江干流上中下游三座水文站的年、月尺度径流开展中长期径流预报。结果表明,对不同频率分量采用不同预报方法的组合模型可以有效提高径流预报精度。Extreme-point Symmetric Mode Decomposition(ESMD)is used to predict runoff series based on a runoff forecasting model to solve two problems after runoff series decomposition-large fluctuation ranges of high frequency components and poor forecast accuracy.We use the stationary processing technique of the ESMD to decompose the runoff series,select the best prediction method by analyzing the characteristics of different frequency components,combine Particle Swarm Optimization(PSO)and Least Square Support Vector Machines(LSSVM)for the prediction of high-frequency components,and use the back-propogation(BP)neural network for the prediction of mid-and low-frequency components.A combined ESMD-PSO-LSSVM-BP forecasting model is constructed to forecast annual and monthly runoffs at three hydrological stations in the upper and middle reaches of the Xijiang River.The results show this model,using different forecasting methods for different frequency components,improves the runoff forecasting accuracy significantly.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.118.173.146