检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄学漾 HUANG Xueyang
机构地区:[1]福建省建筑科学研究院有限责任公司、福建省绿色建筑技术重点实验室,福建福州350108
出 处:《福建建设科技》2024年第4期100-104,共5页Fujian Construction Science & Technology
基 金:福建省社会发展引导性(重点)项目(2022Y0046)。
摘 要:为了能够更加准确、高效地判断桥梁结构损伤位置和程度,本文提出了基于樽海鞘群优化支持向量机(SSA-SVM)方法进行连续梁桥损伤识别的方法。该方法以敏感性较高的曲率模态差作为损伤识别指标,利用樽海鞘群(SSA)算法寻找支持向量机(SVM)最优参数,建立SVM预测模型,通过建立一座三跨连续梁桥有限元模型,以桥梁易损区域作为损伤识别对象进行数值模拟。结果表明:以曲率模态差作为损伤识别指标,能够有效地识别并定位单点或多点的损伤状况,同时准确评估损伤的严重程度。与传统SVM模型比较,SSA-SVM模型实现了参数的自动优化,同时也拥有了更为精准的预测能力。In order to be able to determine the location and degree of bridge structural damage more accurately and efficiently,this paper proposes a new method for damage identification of continuous girder bridges based on salp swarm algorithm optimization support vector machine method.This study proposes a novel approach for damage identification,utilizing the curvature mode difference as a highly sensitive index.The salp swarm algorithm(SSA)is employed to optimize the parameters of the Support Vector Machine(SVM)and establish the SVM prediction model.Numerical simulations are conducted using a finite element model of a three-span continuous girder bridge,with the vulnerable area of the bridge as the target for damage identification.The study demonstrates that employing curvature modal difference as a damage identification index effectively localizes and assesses the damage degree of bridge unit placement and multi-location damage.Additionally,the SSA-SVM model,with automatic parameter optimization,exhibits superior prediction accuracy compared to the conventional SVM model.
关 键 词:连续梁桥 损伤识别 支持向量机 樽海鞘算法 曲率模态
分 类 号:U446[建筑科学—桥梁与隧道工程] TP18[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7