检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:梁士强 高丽洁 张子悦 杨亮 孙怡 LIANG Shi-qiang;GAO Li-jie;ZHANG Zi-yue(Feixian County Center for Disease Control and Prevention,Feixian,China 273400;Shandong Medical College,Linyi,China 276000)
机构地区:[1]费县疾病预防控制中心,山东费县273400 [2]山东医学高等专科学校,山东临沂276000
出 处:《山东医学高等专科学校学报》2024年第4期17-20,共4页Journal of Shandong Medical College
摘 要:目的应用专家建模器建立ARIMA乘积季节模型,分析其在肺结核月报告发病率预测中的适用性。方法应用SPSS专家建模器对2017年1月-2021年12月山东省肺结核月报告发病率资料自动建立ARIMA乘积季节模型,预测2022年1-12月发病率并与观测值比较,评估预测效果。结果ARIMA(1,0,0)(0,1,1)12为最简模型,该模型的R^(2)、MAPE、正态化BIC分别为0.588、6.820、-2.459;预测结果显示,预测波动趋势与实际一致,观测值均在预测值的95%可信区间范围内,相对误差1.79%~46.71%。结论应用专家建模器建立ARIMA乘积季节模型操作简单,适于对肺结核月报告发病率进行短期预测。Objective To establish the ARIMA multiple seasonal model with an expert modeler to analyze its applicability in predicting the incidence of tuberculosis in monthly report.Methods SPSS expert modeler was used to automatically establish an ARIMA multiple seasonal model with the incidence rate of tuberculosis in Shandong Province from January,2017 to December,2021 to predict the incidence rate from January to December of 2022 and to compare the result with the observed data to evaluate the prediction effect.Results ARIMA(1,0,0)(0,1,1)12 was the simplest model,and the R^(2),MAPE and normalized BIC of this model were 0.588,6.820 and-2.459 respectively.The results showed that the predicted fluctuation trend was consistent with the real data,and the observed values were all within the 95%confidence interval of the predicted value,with a relative error between 1.79%and 46.71%.Conclusion ARIMA multiple seasonal model is simple and suitable for short-term prediction of the monthly reported incidence of tuberculosis.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249