基于动态前瞻深度的量子线路映射研究  

Research on quantum circuit mapping based on dynamic look‑ahead depth

在线阅读下载全文

作  者:曹可欣 陈新宇 朱明强 李响 程学云[1] 管致锦[1] CAO Kexin;CHEN Xinyu;ZHU Mingqiang;LI Xiang;CHENG Xueyun;GUAN Zhijin(School of Information Science and Technology,Nantong University,Nantong 226019,China)

机构地区:[1]南通大学信息科学技术学院,江苏南通226019

出  处:《量子电子学报》2024年第4期626-637,共12页Chinese Journal of Quantum Electronics

基  金:国家自然科学基金面上项目(62072259),江苏省研究生科研与实践创新计划项目(SJCX21_1448),面向超导计算的量子线路调度关键技术研究(BK20221411)。

摘  要:随着量子计算技术的快速发展,现在已经进入了噪声中型量子(NISQ)时代。但受限于当前的技术,目前一个量子位只能与相邻的量子位直接交互。为了使量子线路能直接在NISQ设备上执行,需要在逻辑线路中插入SWAP门或使用桥门来近邻化量子位。为了减少量子线路映射中插入额外量子门的数量,本文研究了基于动态前瞻的线路映射方法,考虑了在拓展层中插入交换门的影响,优化了代价函数模型。通过模拟退火算法来确定插入交换门时的最佳前瞻深度,以减少插入交换门的数量,进而减少CNOT门的数量。实验结果表明,与现有映射方法相比,本文提出的算法减少了插入的CNOT门数,平均优化率达到45.59%。With the rapid development of quantum computing technology,it has entered the noisy intermediate scale quantum(NISQ)era.However,due to the limitations of current technology,a qubit can only be directly interacted with adjacent qubits.In order to implement the logical quantum circuit directly on the NISQ device,it is necessary to insert SWAP gates or use bridge gates to make the qubit nearest neighbor.In order to reduce the number of additional quantum gates inserted in quantum circuit mapping,this paper investigates the dynamic look-ahead based circuit mapping method,considering the impact of inserting SWAP gates in the expansion layer and the cost function model is optimized.Then the best lookahead depth is determined when inserting SWAP gates through the simulated annealing algorithm,in order to reduce the number of inserted SWAP gates and thereby reduce the number of CNOT gates.The experimental results show that,compared with the existing mapping method,the proposed algorithm can effectively reduce the number of CNOT gates inserted in circuit mapping,and the average optimization rate reaches to 45.59%.

关 键 词:量子计算 量子映射 动态前瞻 前瞻深度 

分 类 号:TP302.2[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象