检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Guanrong Chen
机构地区:[1]Department of Electrical Engineering,City University of Hong Kong,China
出 处:《National Science Review》2024年第6期76-77,共2页国家科学评论(英文版)
摘 要:Spiking neural networks(SNNs)[1]are known for their superior energy efficiency,achieved through spiking signal transmission that mirrors biological nervous systems,thus solving the unsustainable energy-consumption problem of current artificial neural networks and frameworks.However,effectively training SNNs poses a significant technical challenge.While surrogate gradient-based methods provide a viable solution,the trained SNNs often get stuck in local minima due to their reliance on the inherent gradient dynamics.
分 类 号:R741[医药卫生—神经病学与精神病学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.219.61.156