A chaotic spiking backpropagation approach to brain learning  

在线阅读下载全文

作  者:Guanrong Chen 

机构地区:[1]Department of Electrical Engineering,City University of Hong Kong,China

出  处:《National Science Review》2024年第6期76-77,共2页国家科学评论(英文版)

摘  要:Spiking neural networks(SNNs)[1]are known for their superior energy efficiency,achieved through spiking signal transmission that mirrors biological nervous systems,thus solving the unsustainable energy-consumption problem of current artificial neural networks and frameworks.However,effectively training SNNs poses a significant technical challenge.While surrogate gradient-based methods provide a viable solution,the trained SNNs often get stuck in local minima due to their reliance on the inherent gradient dynamics.

关 键 词:NETWORKS NEURAL CHAOTIC 

分 类 号:R741[医药卫生—神经病学与精神病学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象