检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘佩瑶 LIU Peiyao(College of International Education(Ural Institute),North China University of Water Resources and Electric Power,Zhengzhou 450045,China)
机构地区:[1]华北水利水电大学国际教育学院(乌拉尔学院),郑州450045
出 处:《华北地震科学》2024年第3期35-41,49,共8页North China Earthquake Sciences
摘 要:对影响砂土地震液化的9个影响因素进行主成分分析,提取了4个主成分,同时引入支持向量机建立了砂土地震液化预测模型,并结合工程实例,将预测结果与未进行主成分提取的优化支持向量机模型预测结果进行对比。结果表明:基于主成分分析和优化支持向量机的砂土地震液化预测模型精度更高,可以为震灾防治工作提供有效支撑。Seismic liquefaction of sand is a dynamic geological phenomenon caused by the joint action of multipleinfluencing factors,and it is difficult to accurately distinguish the seismic liquefaction state of sand by conventionalmodels.In this paper,the principal component analysis was carried out on the selected nine influencing factors of sandseismic liquefaction,and four principal components were extracted.At the same time,the support vector machine wasintroduced to establish the prediction model of sand seismic liquefaction.Combined with an engineering example,theprediction results were compared with the prediction results of optimized support vector machine model withoutprincipal component extraction.The results showed that the prediction model of sand seismic liquefaction based onprincipal component analysis and optimized support vector machine had higher accuracy,and could provide effectivesupport for earthquake disaster prevention and control work.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222