检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈金娥[1] 吴士宾 汪永成 CHEN Jine;WU Shibin;WANG Yongcheng(Anhui Medical College,Hefei 230601,China;China Three Gorges Renewables(Group)Co.,Ltd,Baoding 073100,China)
机构地区:[1]安徽医学高等专科学校,合肥230601 [2]中国三峡新能源(集团)股份有限公司,河北保定073100
出 处:《安阳工学院学报》2024年第4期60-66,共7页Journal of Anyang Institute of Technology
基 金:安徽省高校自然科学研究重点项目(KJ2020A0865)。
摘 要:针对汽车轮胎胎侧区生产过程中的各类缺陷,设计了无损检测图像的处理与识别方法。基于数字X射线摄影成像原理,分析了包括帘线开裂、帘线弯曲等在内的多种典型缺陷图像特征。提出一种结合均值修正的大津阈值图像分割算法和基于结构元素的迭代细化方法。通过构建不同类别的识别判据,实现了对包括异物夹杂、帘线断裂在内的4类微观和宏观缺陷的分类检测。算法整体缺陷识别概率达94.3%,漏检率低于8.7%。结果表明,所设计的图像处理与识别体系,可以有效实施轮胎胎侧区缺陷的自动化无损检测。该研究为保障汽车轮胎使用安全性提供了一定借鉴。To address various defects in the production process of the tire sidewall area,an image processing and recognition method for non-destructive testing was designed.Based on the DR imaging principle,the image features of typical defects,including cord cracking and cord bending,were analyzed.A segmentation algorithm combining mean correction and Otsu thresholding,as well as an iterative refinement method based on structural elements,was proposed.By constructing different recognition criteria for different categories,the classification and detection of four types of microscopic and macroscopic defects,including foreign material inclusion and cord fracture,were realized.The algorithm achieved an overall defect recognition probability of 94.3%,with a missed detection rate below 8.7%.The results demonstrated that the designed image processing and recognition system can effectively implement automated non-destructive detection of tire sidewall defects.This study provided a valuable reference for ensuring the safety of automobile tires.
关 键 词:汽车轮胎 数字X射线摄影图像 阈值分割 图像细化 缺陷识别
分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49