检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周奇 吕飞 周煜晨 姚殷培 王驰 吴頔杰 ZHOU Qi;LV Fei;ZHOU Yuchen;YAO Yinpei;WANG Chi;WU Dijie(Guoneng Changyuan Hanchuan Power Generation Co.,Ltd.,Hanchuan 431600,China)
机构地区:[1]国能长源汉川发电有限公司,湖北汉川431600
出 处:《电工技术》2024年第11期33-35,40,共4页Electric Engineering
摘 要:转子绕组匝间短路是汽轮发电机的主要故障之一,对该故障的既有诊断方法仍有不足。在分析径向基函数神经网络基础上,提出一种基于该神经网络的汽轮发电机转子绕组匝间短路故障诊断方法。详细介绍了该方法的故障诊断流程,并对其进行了仿真验证。研究表明,该方法精度高且收敛速度快,可有效诊断汽轮发电机转子绕组匝间短路故障。The inter-turn short circuit of rotor winding is one of the main faults in turbogenerators,and there are still shortcomings in existing diagnostic methods for this fault.Based on the analysis of radial basis function neural networks,a fault diagnosis method for inter-turn short circuits in turbogenerator rotor windings is proposed based on this neural network.The fault diagnosis process of this method is outlined in detail in this paper,and simulation verification is conducted.The proposed method is found to have high accuracy and fast convergence speed,and can effectively diagnose inter-turn short circuit faults in turbogenerator rotor windings.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38