改进YOLOv7-tiny的轻量化大型铸件焊缝缺陷检测  被引量:1

Improved YOLOv7-tiny Lightweight Large Casting Weld Defect Detection

在线阅读下载全文

作  者:穆春阳[2,3] 李闯 马行 刘永鹿[1] 杨科 刘宝成 MU Chunyang;LI Chuang;MA Xing;LIU Yonglu;YANG Ke;LIU Baocheng(College of Electrical and Information Engineering,North Minzu University,Yinchuan 750021,China;The Key Laboratory of Intelligent Information and Big Data Processing of Ningxia Province,North Minzu University,Yinchuan 750021,China;College of Mechatronic Engineering,North Minzu University,Yinchuan 750021,China)

机构地区:[1]北方民族大学电气信息工程学院,银川750021 [2]北方民族大学宁夏智能信息与大数据处理重点实验室,银川750021 [3]北方民族大学机电工程学院,银川750021

出  处:《组合机床与自动化加工技术》2024年第7期156-160,共5页Modular Machine Tool & Automatic Manufacturing Technique

基  金:宁夏回族自治区重点研发计划项目(2021BEE03002);银川市科技创新项目(2022GX04);自治区科技创新领军人才培养工程项目(2021GKLRLX08);北方民族大学研究生创新项目(YCX22121)。

摘  要:针对目前焊缝缺陷数据集少,检测环境恶劣,人为识别困难等问题,提出了一种改进的YOLOv7-tiny算法。由于检测物体缺陷形状不规则,采用可变形卷积能够学习到更加丰富的特征信息和感知到物体的细节信息,增强了模型的表达能力和泛化能力;为了在提高焊缝缺陷检测速度的同时,不降低准确率,满足工厂实时性的要求,提出了一种融合轻量化卷积和注意力机制的ELAN-PCS网络结构;为了解决中小目标检测困难,很容易出现漏检的情况,引入了通道注意力机制。实验结果表明,与原YOLOv7-tiny相比,改进模型在大型铸件焊缝缺陷数据集上mAP(0.5)提升1.8%、mAP(0.5~0.95)提升6.8%,模型参数量下降1.9 M。An improved YOLOv7-tiny algorithm is proposed to solve the problems of few weld defect data sets,poor detection environment and difficult artificial recognition.Due to the irregular shape of the detected object defect,the deformable convolution can learn more abundant feature information and perceive the detail information of the object,which enhances the expression ability and generalization ability of the model.In order to improve the detection speed of weld defects without reducing the accuracy and meet the real-time requirements of the factory,an ELAN-PCS network structure combining lightweight convolution and attention mechanism is proposed.In order to solve the difficulty of small and medium target detection,it is easy to miss detection,and the channel attention mechanism is introduced.The experimental results show that compared with the original YOLOv7-tiny,the improved model increases mAP(0.5)by 1.8% and mAP(0.5~0.95)by 6.8% on the large-scale casting weld defect dataset,and the number of model parameters decreases by 1.9 M.

关 键 词:轻量化 缺陷检测 YOLOv7-tiny 注意力机制 可变形卷积 

分 类 号:TH162[机械工程—机械制造及自动化] TG66[金属学及工艺—金属切削加工及机床]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象