不同燕麦品种全株矿物质元素含量及营养成分分析  

Analysis of mineral element content and nutrient composition of different oat varieties in whole plants

在线阅读下载全文

作  者:柴华 杨曌 李莎莎 王晓龙 徐艳霞 吴玥 陈金利[4] CHAI Hua;YANG Zhao;LI Sha-sha;WANG Xiao-long;XU Yan-xia;WU Yue;CHEN Jin-li

机构地区:[1]黑龙江省农业科学院畜牧兽医分院,黑龙江齐齐哈尔161005 [2]黑龙江省农业科学院博士后科研工作站,黑龙江哈尔滨150086 [3]黑龙江省牧草育种与种质资源利用工程技术研究中心,黑龙江齐齐哈尔161005 [4]黑龙江绿色草原牧场有限公司,黑龙江大庆163000

出  处:《饲料研究》2024年第12期121-127,共7页Feed Research

基  金:黑龙江省农业科技创新跨越工程项目(项目编号:CX23GG06)。

摘  要:试验分析不同燕麦品种全株的矿物质元素和营养成分含量,旨在筛选高质量的反刍动物饲料来源。选取7个燕麦品种(白燕13号、悍马、优牧1号、凯撒、摩根、莫妮卡、陇燕5号),采用近红外光谱分析仪对供试燕麦品种全株的矿物质元素和营养成分含量进行测定。结果显示,悍马、白燕13号、优牧1号、莫妮卡的Ca、P、Mg、K 4种矿物质元素含量较高;陇燕5号和莫妮卡的粗蛋白含量较高;凯撒和莫妮卡的粗脂肪含量较高;陇燕5号和莫妮卡的粗灰分含量较低;莫妮卡的中性洗涤纤维和酸性洗涤纤维含量最低。研究表明,莫妮卡的矿物质元素含量丰富,粗蛋白和粗脂肪含量较高,粗灰分含量较低,产能高于其他品种,可作为反刍动物优质的饲料来源。The experiment analyzed the mineral element and nutritional components content of different oat varieties to screen for high-quality forage sources for ruminant animals.Seven oat varieties(Baiyan No.13,Hanma,Youmu No.1,Kaisa,Mogen,Monika,and Longyan No.5)were selected,and a near-infrared spectrometer was used to measure the mineral element and nutritional components content of the whole plant of the tested oat varieties.The results showed that Hanma,Baiyan No.13,Youmu No.1,and Monica had higher concentrations of Ca,P,Mg,and K.The crude protein concentration of Longyan NO.5 and Monica was higher.Kaisa and Monica had a higher ether extract concentration.The crude ash concentration of Longyan No.5 and Monica was lower.Monica had the lowest concentration of neutral and acidic detergent fibers.The study indicates that Monica is rich in mineral elements,the concentrations of crude protein and ether extract are higher,the concentration of crude ash is lower,the productivity is higher than the other oat varieties.Monika is a high-quality feed source of ruminants.

关 键 词:燕麦品种 矿物质元素 营养成分 

分 类 号:S816[农业科学—饲料科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象