检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨瑞仙 于政杰 钟茜[4] 刘莉莉 韦华楠 Yang Ruixian;Yu Zhengjie;Zhong Qian;Liu Lili;Wei Huanan(School of Information Management,Zhengzhou University,Zhengzhou 450001;Research Institute of Data Science,Zhengzhou City,Zhengzhou 450001;Central Big Data Innovation Center,China Academy of Information and Communications Technology,Zhengzhou 450001;School of Information Management,Sun Yat-sen University,Guangzhou 510006)
机构地区:[1]郑州大学信息管理学院,郑州450001 [2]郑州市数据科学研究中心,郑州450001 [3]中国信息通信研究院中部大数据创新中心,郑州450001 [4]中山大学信息管理学院,广州510006
出 处:《情报学报》2024年第6期685-696,共12页Journal of the China Society for Scientific and Technical Information
基 金:河南省高等学校哲学社会科学基础研究重大项目“融入多用户属性的网络知识社区核心用户识别与推荐研究”(2023-JCZD-27);河南省高等学校青年骨干教师培养计划“学术虚拟社区知识交流机制的系统动力学仿真研究”(2020-GGJS-012)。
摘 要:基于对网络知识社区用户属性的分析,本文提出一种融合多用户属性的核心用户识别方法,以提升核心用户识别的效率和效果,为提高社区运营和管理水平提供理论和方法参考。首先,基于用户的基本属性数据对用户的活跃性和专业性进行量化;其次,构建网络知识社区超网络模型,提出基于邻居好友重叠度的用户社交关系重要性算法、用户交互活动中的累计交互情感计算方法以及用户综合情感倾向性排名算法;最后,采用熵权法融合上述指标作为用户核心性得分,并通过得分排序识别核心用户。研究结果表明,相比于用户社交关系网络中的度中心性排名和用户交互关系网络中的LeaderRank排名,本文提出的融合多属性的网络知识社区核心用户识别方法具有更好的识别效果。Based on the analysis of user attributes in network knowledge communities,a core user identification method that integrates multiple user attributes is proposed to improve the efficiency and effect of core user identification and provide theoretical and methodological reference for improving community operation and management levels.First,based on the user’s basic attribute data,the user’s activity and professionalism are quantified.Second,a hypernetwork model of the online knowledge community is constructed.An algorithm for the importance of user social relations based on the overlap of neighboring friends,a method for calculating cumulative interaction emotions in user interaction activities,and a ranking algorithm for user comprehensive emotional orientation are proposed.Finally,the entropy weight method is used to integrate the above indicators as the user’s core score,and core users are identified by sorting the scores.The results of em‐pirical research indicate that,compared with the degree centrality ranking in the user social relationship network and the LeaderRank ranking in the user interaction relationship network,the method for identifying core users in the online knowl‐edge community by integrating multiple attributes proposed in this study has better recognition effects.
关 键 词:核心用户识别 情感分析 LeaderRank 网络知识社区 链接分析
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7