基于高质量文献的肿瘤学领域研究前沿识别研究  被引量:1

Study on Frontier Identification of Oncology Research Based on High Quality Literature

在线阅读下载全文

作  者:朱韶华[1] 李艳红[2] 张迅 黄海量[2] ZHU Shaohua;LI Yanhong;ZHANG Xun;HUANG Hailiang(Library,Ruijin Hospital Affiliated to School of Medicine of Shanghai Jiaotong University,Shanghai 200025,China;School of Information Management and Engineering,Shanghai University of Finance and Economics,Shanghai 200433,China;Department of Ultrasound,Fudan University Shanghai Cancer Center,Shanghai 200032,China)

机构地区:[1]上海交通大学医学院附属瑞金医院图书馆,上海200025 [2]上海财经大学信息管理与工程学院,上海200433 [3]复旦大学附属肿瘤医院超声科,上海200032

出  处:《医学信息学杂志》2024年第7期49-54,共6页Journal of Medical Informatics

基  金:国家自然科学基金项目(项目编号:72271151)。

摘  要:目的/意义识别领域研究前沿,辅助科学研究者有效遴选和追踪重点研究主题,助力科研管理决策者动态调整政策导向。方法/过程以Web of Science 2012—2022年37927条肿瘤学领域高影响力期刊文献题录和高被引文献题录为数据样本,运用BERTop提取主题,构建多维指标研究前沿识别模型,从多维度识别领域内不同类型的研究前沿。结果/结论所构建模型识别出肿瘤学领域热点研究前沿主题9个、新兴研究前沿主题14个、潜在研究前沿主题13个和衰退研究主题1个,具有有效性。Purpose/Significance To identify research frontiers in the field,so as to assist scientific researchers to effectively select and track key research topics,and help research management decision-makers to dynamically adjust policy orientation.Method/Process Taking 37927 pieces of high-impact journal document references and highly cited document references from the WOS database which published in the period of 2012—2022 as the data samples,BERTopic is used to extract topics,a multi-dimensional indicator research frontier recognition model is constructed,and different types of research frontiers in the field are identified from multiple dimensions.Result/Conclusion The proposed model identifies 9 hot research frontier topics,14 emerging research frontier topics,13 potential research frontier topics and 1 declining research topic in the field of oncology,which is effective.

关 键 词:研究前沿 BERTopic 多维指标 肿瘤学 高质量文献 

分 类 号:R-058[医药卫生]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象