检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李海莲[1] 杨斯媛 祁增涛 刘忠磊 李清华 LI Hailian;YANG Siyuan;QI Zengtao;LIU Zhonglei;LI Qinghua(School of Civil Engineering,Lanzhou Jiaotong University,Lanzhou 730070,Gansu,China;Inner Mongolia Electric Power Survey&Design Institute Co.,Ltd.,Hohhot 010011,Inner Mongolia,China;China Railway Qinghai-Tibet Group Co.,Ltd.,Xi'ning 810006,Qinghai,China;China Railway Fourteen Bureau Group Co.,Ltd.,Ji'nan 250101,Shandong,China;CCCC Frist Highway Engineering Group Co.,Ltd.,Beijing 100024,China)
机构地区:[1]兰州交通大学土木工程学院,甘肃兰州730070 [2]内蒙古电力勘测设计院有限责任公司,内蒙古呼和浩特010011 [3]中国铁路青藏集团有限公司,青海西宁810006 [4]中铁十四局集团有限公司,山东济南250101 [5]中交一公局集团有限公司,北京100024
出 处:《重庆交通大学学报(自然科学版)》2024年第8期10-17,共8页Journal of Chongqing Jiaotong University(Natural Science)
基 金:国家自然科学基金项目(51868042);甘肃省自然科学基金项目(22JR5RA334);甘肃省高等学校创新基金项目(2021A-048);兰州交通大学"百名青年优秀人才培养计划"基金项目(2018103)。
摘 要:针对传统沥青路面使用性能预测精度较低的问题,建立了基于粗糙集理论(rough set,RS)与主成分分析法(principal compoent analysis,PCA)-自适应粒子群算法(adaptive particle swarm optimization,APSO)-支持向量机(support vector machine,SVM)的沥青路面使用性能预测模型。基于沥青路面的时序指标与影响因素指标,建立了11个初始预测指标(包括前3年的路面使用性能、当量轴次、路龄、养护性质、坑槽率、修补率、年降水量、平均气温、日照时数);通过RS属性约减筛选出9个核心指标;利用PCA提取4个主成分,得到了基于4个主成分的数据集;将APSO引入到SVM中,对数据集进行训练,并优化了SVM模型参数;建立了路面使用性能的PCA-APSO-SVM预测模型,并以G6京藏高速甘肃境内某段道路为例,对路面使用性能进行预测。研究结果表明:PCA-APSO-SVM模型预测精度较PCA-PSO-SVM、APSO-SVM、PSO-SVM有较大提高,预测结果与实际情况更加符合,能为路面养护决策提供相关参考。Aiming at the problem of low accuracy of traditional asphalt pavement serviceability prediction,the asphalt pavement serviceability prediction model based on rough set theory(RS)and PCA-(principal component analysis)APSO-(adaptive particle swarm optimization)SVM(support vector machine)was established.Considering the time-series indexes and influencing factor indexes of asphalt pavement,11 initial prediction indexes(including the pavement serviceability,the equivalent axle times,the road age,the maintenance nature,the pothole rate,the repair rate,the annual precipitation,the average temperature and sunshine hours in previous 3 years)were established.Nine core indexes were screened out by rough RS attribute reduction,four principal components were extracted by PCA and a dataset based on the four principal components was obtained.The adaptive particle swarm algorithm(APSO)was introduced into the SVM,the dataset was trained and the parameters of the SVM model were also optimized.The PCA-APSO-SVM prediction model of the pavement serviceability was established,and the prediction of the pavement serviceability was carried out by taking a certain section of the G6 Beijing-Tibet Expressway in Gansu as an example.The research results show that the prediction accuracy of PCA-APSO-SVM model has been significantly improved compared to PCA-PSO-SVM,APSO-SVM and PSO-SVM,and the prediction results are more in line with the actual situation,which can provide relevant references for the decision-making of pavement maintenance.
关 键 词:道路工程 路面使用性能预测 粗糙集理论 主成分分析 粒子群算法 支持向量机
分 类 号:U416.2[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.230.65