检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Junping Wang Xiaoshen Wang Xiu Ye Shangyou Zhang Peng Zhu
机构地区:[1]Division of Mathematical Sciences,National Science Foundation,Alexandria,VA 22314,USA [2]Department of Mathematics,University of Arkansas at Little Rock,Little Rock,AR 72204,USA [3]Department of Mathematical Sciences,University of Delaware,Newark,DE 19716,USA [4]College of Data Science,Jiaxing University,Jiaxing 314001,China
出 处:《Science China Mathematics》2024年第8期1899-1910,共12页中国科学(数学)(英文版)
基 金:supported by U.S.National Science Foundation IR/D program while working at U.S.National Science Foundation;supported by U.S.National Science Foundation(Grant No.DMS-1620016);supported by Zhejiang Provincial Natural Science Foundation of China(Grant No.LY23A010005);National Natural Science Foundation of China(Grant No.12071184)。
摘 要:This article extends a recently developed superconvergence result for weak Galerkin(WG)approximations for modeling partial differential equations from constant coefficients to variable coefficients.This superconvergence features a rate that is two orders higher than the optimal-order error estimates in the usual energy and L^(2)norms.The extension from constant to variable coefficients for the modeling equations is highly non-trivial.The underlying technical analysis is based on a sequence of projections and decompositions.Numerical results confirm the superconvergence theory for second-order elliptic problems with variable coefficients.
关 键 词:weak Galerkin finite element methods SUPERCONVERGENCE second-order elliptic problems stabilizerfree
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.221.99.121