机构地区:[1]School of Physics,Henan Normal University,Xinxiang 453007,China [2]Key Lab for Special Functional Materials of Ministry of Education,National&Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology,School of Nanoscience and Materials Engineering,Collaborative Innovation Center of Nano Functional Materials and Applications,Henan University,Kaifeng 475004,China [3]School of Materials Science and Engineering,Henan Normal University,Xinxiang 453007,China [4]Helmholtz-Zentrum Berlin fur Materialien und Energie GmbH,Hahn-Meitner-Platz 1,Berlin 14109,Germany [5]School of Engineering and Materials Science(SEMS),Queen Mary University of London,London E14NS,UK [6]Institute of Physics,Henan Academy of Sciences,Zhengzhou 450000,China
出 处:《Science China Materials》2024年第8期2611-2617,共7页中国科学(材料科学)(英文版)
基 金:the support of all the technicians at Henan Normal University and Henan University;supported by Zhongyuan Scholar of Henan Province(224000510007);the National Natural Science Foundation of China(11974103)for funding;the financial support from the AXA research fund;the funding from Henan Province College Youth Backbone Teacher Project(2020GGJS062)。
摘 要:带隙可调的钙钛矿材料在室内光伏(IPVs)领域具有广阔的应用前景.然而,与室内光相匹配的宽带隙钙钛矿通常导电性较差,缺陷密度较高,往往不利于电荷提取和传输,限制了其光伏特性.在这里,我们通过调节Br/I比,探究了不同带隙三阳离子钙钛矿的IPVs特性.研究表明,宽带隙钙钛矿能充分利用室内光,在低照度下能获得较高的开路电压,但高Br/I比的钙钛矿具有较高的缺陷密度,不利于获得高短路电流密度和填充因子.通过进一步研究不同带隙钙钛矿的结晶动力学、缺陷密度和电荷传输特性,我们发现主流观念中高效IPVs着重考虑室内光伏材料的带隙是不全面的,我们证明了通过适当降低宽带隙晶体中的Br含量可以获得室内光伏特性更优异的器件.也就是说,室内光伏晶体材料的制备需要兼顾带隙和电荷传输特性.在此工作中,平衡带隙和电荷传输的器件(Br 0.23,1.62 eV)在1035 lux的LED灯照射下取得了40.71%的最佳效率.我们的研究为高效室内光伏的设计提供了新思路.The tunable bandgaps of metal halide perovskites lead to their promising application in indoor photovoltaics(IPVs).However,perovskites with wide bandgaps suitable for indoor light typically have lower conductivity and higher defect density,which leads to inefficient charge transport and extraction,limiting their photovoltaic performances.Herein,we investigated the IPV characteristics of triple-cation perovskites with varying bandgaps by tailoring the Br/I ratios.We found that wide-bandgap perovskites could effectively utilize indoor light and achieve high open circuit voltage values under low illumination conditions.However,increasing the Br/I ratios results in higher defect density,leading to decreased short-circuit current density and fill factor.We thoroughly studied the crystallization dynamics,defect density,and charge transfer properties of triple-cation perovskites with varying bandgaps.We found the prevailing concept that efficient IPVs taking the bandgap of IPV materials into special consideration was not comprehensive.We demonstrate that IPV devices with superior IPV properties can be developed by appropriately reducing the Br contents in wide-bandgap crystals.In other words,the preparation of IPV crystal materials should consider both the bandgap and charge transport characteristics.In this work,we obtained devices with the optimal efficiency of 40.71%under 1035 lux LED illumination by achieving a balance between bandgap and charge transfer(Br 0.23,1.62 eV).This research provides valuable insights for the design of efficient IPVs.
关 键 词:缺陷密度 电荷传输 光伏特性 钙钛矿 最佳效率 光伏材料 短路电流密度 填充因子
分 类 号:TU18[建筑科学—建筑理论] TB34[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...