检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:石征锦[1] 李文慧[1] 高天 SHI Zhengjin;LI Wenhui;GAO Tian(Shenyang Ligong University,Shenyang 110159,China)
机构地区:[1]沈阳理工大学,辽宁沈阳110159
出 处:《现代信息科技》2024年第13期52-55,60,共5页Modern Information Technology
摘 要:由于肺部CT图像的特征信息复杂度较高,经典3D U-Net网络在肺结节分割方面准确率较低,存在误分割等问题。基于此,提出一种基于改进3D U-Net的网络模型。通过将加入了密集块的3D U-Net网络和双向特征网络(Bi-FPN)融合,提高了模型分割精度。同时采用深度监督训练机制,进一步提高了网络性能。在公开数据集LUNA-16上对模型进行比较实验和评估,结果显示,改进后的3D U-Net网络,Dice相似系数较原模型提高4%,分割精度为93.9%,敏感度为94.3%,证明该模型在肺结节分割精度及准确率方面具有一定的应用价值。Due to the high complexity of feature information in lung CT images,the classic 3D U-Net network exhibits low accuracy in lung nodule segmentation,leading to issues such as miss segmentation.To address this,a network model based on improved 3D U-Net is proposed.This model integrates 3D U-Net network with dense blocks with the Bidirectional Feature Pyramid Network(Bi-FPN)to improve the model's segmentation accuracy.The adoption of deep supervision training mechanism further enhances network performance.Comparative experiments and evaluations are conducted on the public dataset LUNA-16,and the results show that the improved 3D U-Net network has a 4%increase in Dice similarity coefficient,a segmentation accuracy of 93.9%,and a sensitivity of 94.3%compared to the original model.This proves that the model has certain application value in the accuracy and precision of lung nodule segmentation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70