检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:申士彪 彭健钧[1] 王鸿亮[2] 郭立 魏磊 孟巾凯 SHEN Shibiao;PENG Jianjun;WANG Hongliang;GUO Li;WEI Lei;MENG Jinkai(School of Information Science and Engineering,Dalian Polytechnic University,Liaoning Dalian 116034,China;Shenyang Institute of Computing Technology Chinese Academy of Scientces,Shenyang 110168,China;Dalian Branch,China Mobile Communications Group Liaoning Co.,Ltd,Liaoning Dalian 116001,China)
机构地区:[1]大连工业大学信息科学与工程学院,辽宁大连116034 [2]中国科学院沈阳计算技术研究所,沈阳110168 [3]中国移动通信集团辽宁有限公司大连分公司,辽宁大连116001
出 处:《小型微型计算机系统》2024年第8期1935-1943,共9页Journal of Chinese Computer Systems
基 金:辽宁省教育厅科学研究经费项目(面上项目)(LJKZ0529)资助;国家留学基金项目(202008210334)资助.
摘 要:针对多摄像头重叠场景中行人追踪容易发生身份丢失、切换的问题,本文提出了一种基于YOLOv8和DeepSort的多摄像头跟踪算法.在检测阶段,利用无参注意力机制增强网络对行人特征的提取能力,提高了检测器的性能.在追踪阶段,通过提取两个摄像头的视角关键点,并计算出两个视角的单应性矩阵,实现了不同视角图像的拼接.通过利用目标间的单应性关系,在DeepSort算法中完成目标匹配.并在MOT15数据集中,对所改进的算法进行了测试.实验结果表明,本文提出的基于YOLOv8和DeepSort的改进算法的平均跟踪精确度为63.5%,比原始算法提升了3.4%.改进算法在行人身份切换次数方面减少了52次,比原始算法减少了6.5%.In order to solve the problem that identity loss and switching are easy to occur in pedestrian tracking in multi-camera overlapping scenes,this paper proposes a multi-camera tracking algorithm based on YOLOv8 and DeepSort.In the detection stage,the parameter-free attention mechanism was used to enhance the network′s ability to extract pedestrian features,and the performance of the detector was improved.In the tracking stage,the key points of the viewing angles of the two cameras were extracted,and the mono-response matrix of the two viewing angles was calculated,so that the stitching of images from different viewing angles was realized.By using the mono-response relationship between targets,the target matching is completed in the DeepSort algorithm.And in the MOT15 dataset,the improved algorithm was tested.Experimental results show that the average tracking accuracy of the improved algorithm based on YOLOv8 and DeepSort is 63.5%,which is 3.4%higher than that of the original algorithm.The improved algorithm reduces the number of pedestrian identity switches by 52 times,which is 6.5%less than the original algorithm.
关 键 词:行人跟踪 YOLOv8 DeepSort 注意力机制
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.22.242.110