检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李锦[1] 贺兴时[1] 梁芸芸 LI Jin;HE Xingshi;LIANG Yunyun(School of Science,Xi’an Polytechnic University,Xi’an 710048,China)
出 处:《哈尔滨商业大学学报(自然科学版)》2024年第4期404-412,共9页Journal of Harbin University of Commerce:Natural Sciences Edition
基 金:陕西省自然科学基金(2023-JC-YB-064)。
摘 要:血管生成在各种疾病中,尤其是癌症的发病机制中起着关键作用,因此开发更加快速高效的抗血管生成肽(AAPs)智能识别工具尤为重要.基于多种特征工程、深度学习和集成学习构建了一个深度网络投票的识别模型iAAPs-DNV.采用AAindex编码、分组权重编码(EBGW)、K-间隔氨基酸对(KSAAP)、基于物理化学性质的二阶移动平均(SOMA)和BLOSUM62编码提取氨基酸序列的特征信息.利用软投票策略集成加入了注意力机制(attention)的双向长短期记忆网络(BiLSTM)和卷积神经网络(CNN),并通过全连接层输出识别结果.iAAPs-DNV模型在Main数据集和NT15数据集上的识别精度明显优于已有的识别模型,表明该模型能够高效准确地识别抗血管生成肽.Angiogenesis played a key role in the pathogenesis of various diseases,especially cancer,so the development of more rapid and efficient intelligent identification tools for anti-angiogenic peptides(AAPs)was particularly important.In this paper,a deep network voting identification model,iAAPs-DNV,was constructed based on multiple feature engineering,deep learning,and ensemble learning approaches.The feature information of amino acid sequences was extracted using AAindex coding,encoding based on grouped weights(EBGW),K-spacing amino acid pairs(KSAAP),second-order moving average(SOMA)derived from physicochemical properties,and BLOSUM62 coding.Subsequently,the soft voting strategy was employed to integrate the bidirectional long short-term memory network(BiLSTM)and the convolutional neural network(CNN),both of which incorporated the attention mechanism.Identification results were then outputted through a fully connected layer.The identification accuracies of iAAPs-DNV in the Main dataset and NT15 dataset were significantly superior to those of existing identification models,indicating that the model could efficiently and accurately identify AAPs.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49