检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:田芝丹 俞翔[1] 万海波[1] TIAN Zhidan;YU Xiang;WAN Haibo(College of Naval Architecture and Ocean,Naval University of Engineering,Wuhan 430033,Hubei,China)
机构地区:[1]海军工程大学舰船与海洋学院,湖北武汉430033
出 处:《电气传动》2024年第8期90-96,共7页Electric Drive
基 金:湖北省自然科学基金(2022CFB405)。
摘 要:为了解决微型电机声学质量检测人工手摸及听诊方法存在的主观误判率高、效率低下等问题,同时兼顾检测结果准确率和检测模型构建的快速性,提出了一种小样本机器学习检测方法,其根据微型电机传动链物理模型进行多维声学故障特征提取,在此基础上,采用粒子群优化算法对支持向量机这种小样本学习方法的核心参数进行优化,从而提高模型判别的准确率。试验结果表明,该方法能够有效判别微型电机异常振动和声音,准确率达到95%以上。In order to solve the problems of high subjective misjudgment rate and low efficiency in manual hand touch and auscultation methods for acoustic quality detection of micro motors,while taking into account the accuracy of detection results and the fast construction of detection models,a small sample machine learning detection method was proposed.Based on the physical model of micro motor transmission chain,multi-dimensional acoustic fault features were extracted,particle swarm optimization was used to optimize the core parameters of support vector machine,a small sample learning method,so as to improve the accuracy of model discrimination.The experimental results show that this method can effectively distinguish abnormal vibration and sound of micro motors,with an accuracy rate of over 95%.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49