检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:薄启欣 许月蒙 张睿 董秉坤 戴丽娟 杨小雨 杨叶飞[2] BO Qixin;XU Yuemeng;ZHANG Rui;DONG Bingkun;DAI Lijuan;YANG Xiaoyu;YANG Yefei(School of Economics and Management,University of Science and Technology Beijing,Beijing 100083,China;School of Economics and Management,Beijing Jiaotong University,Beijing 100044,China;Logistics Management Department,Hainan Provincial Tobacco Company,Haikou 571100,China;Marketing Department,China Tobacco Industry Development Center,Beijing 100055,China;Training Center,China Tobacco Yunnan Industrial Co.,Ltd.,Kunming 650051,China;Logistics Center,Hohhot Tobacco Company,Hohhot 010020,China)
机构地区:[1]北京科技大学经济管理学院,北京市海淀区100083 [2]北京交通大学经济管理学院,北京市海淀区100044 [3]海南省烟草公司物流管理处,海口市琼山区571100 [4]中国烟草实业发展中心市场营销部,北京市西城区100055 [5]云南中烟工业有限责任公司培训中心,云南省昆明市650051 [6]呼和浩特市烟草公司物流中心,呼和浩特市010020
出 处:《烟草科技》2024年第6期92-98,106,共8页Tobacco Science & Technology
基 金:国家自然科学基金青年基金项目“智能制造模式实施效果及关键影响因素的研究”(B21A0800050)。
摘 要:为解决卷烟成品仓库空间利用率低、出入库效率低等问题,以货物出入库时间最短为目标建立卷烟成品自动化立体仓库(AS/RS,Automated Storage and Retrieval System)模型,并设计两阶段细菌觅食算法对AS/RS模型运行过程中的货位分配和作业调度两个环节进行集成优化,生成周期(1 d)内出入库策略。以内蒙古昆明卷烟有限责任公司卷烟成品库单日货物出入库订单为算例,分别采用细菌觅食算法、粒子群算法、模拟退火算法、遗传算法对模型进行求解,对比初始的分区存储方案(每排货架仅存储一种品牌卷烟成品)和4种算法下卷烟成品AS/RS的单日运行时间和货位分配优化效率。结果表明:4种算法的运行结果均优于分区存储方案;细菌觅食算法的运行结果最优且在初始货位占用规模为0~20个时具有良好稳定性,频繁出入库的货物被集中分配在靠近出库口的货位,平均单日运行时间节约12%,平均出入库效率提升23%。该方法可为提高卷烟成品仓库运行效率、降低人工成本提供支持。To make better use of storage space and pursue efficient receiving and retrieving operations,an automated storage and retrieval system(AS/RS)model was established with the goal of minimizing handling time for an automatic high rack cigarette warehouse.In addition,a two-stage bacterial foraging algorithm was developed to integrate and optimize storage location allocation and job scheduling during the operation of the AS/RS model,and to generate a receiving/retrieving strategy for a one-day cycle.Taking the daily cigarette receiving and retrieving orders of the finished cigarette warehouse of Inner Mongolia Kunming Cigarette Limited Corporation as an example,the bacterial foraging algorithm,particle swarm optimization algorithm,simulated annealing algorithm,and genetic algorithm were used to solve the model,respectively,and then compared with the initial storage strategy,under which each row of shelves are limited to receive the cigarettes of the same brand,in terms of operation time in one single day and storage space utilization.The results showed that the four algorithms were all superior to the initial one.Among them,the bacterial foraging algorithm showed the best performance and good stability when no more than 20 storage locations were occupied before that test initiated.Moreover,the frequently received/retrieved goods were allocated to the storage locations near the shipment end,it resulted in a 12%reduction in the average travel time and a 23%increase in the average receiving/retrieving efficiency.This method supports the promotion of operational efficiency and the reduction of labor costs in finished cigarette warehouses.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.96.88