检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:党小超 叶汉鑫 董晓辉 李芬芳 祝忠彦[2] DANG Xiaochao;YE Hanxin;DONG Xiaohui;LI Fenfang;ZHU Zhongyan(College of Computer Science&Engineering,Northwest Normal University,Lanzhou 730070,China;Longshou Mine,Jinchuan Group Co.,Ltd.,Jinchang,Gansu 737103,China)
机构地区:[1]西北师范大学计算机科学与工程学院,兰州730070 [2]金川集团股份有限公司龙首矿,甘肃金昌737103
出 处:《计算机工程与应用》2024年第16期311-318,共8页Computer Engineering and Applications
基 金:国家自然科学基金(62162056);甘肃省产业支撑计划项目(021CYZC-06)。
摘 要:矿井提升系统是矿业生产的核心设备,矿井提升系统的故障维护记录等重要资料多数以文本形式存储,构建矿井提升系统故障图谱可以有效利用这部分资料。关系抽取是故障图谱构建的重要环节,为了提高矿井提升系统故障图谱构建的关系抽取环节的准确率,提出一种模型融合的关系抽取方法。该方法使用自然语言处理技术从维修点检记录中提取出相关的故障描述和机器部件信息,利用自建模型从这些文本数据中提取出故障实体关系。针对目前提升系统故障文本数据集缺乏的问题,收集了西北某大型有色金属矿产企业的点检维修记录数据和现有的矿井提升系统故障文献,将这些数据进行清洗和整理,建立了一个矿井提升系统故障文本数据集。将该模型与传统模型在自建数据集上进行实验,实验结果证明该模型相较于传统模型有更高的准确率。Mine hoisting system is the core equipment of mining production,most of the important data such as fault maintenance records of mine hoisting system are stored in text form,and the construction of mine hoisting system fault graph can make effective use of these data.Relationship extraction is an important part of fault graph construction.In order to improve the accuracy of the relationship extraction in constructing the fault graph of mine hoisting system,this paper proposes a model fusion method for relationship extraction.The method uses natural language processing techniques to extract relevant fault descriptions and machine component information from maintenance records,and uses a self-built model to extract fault entity relationships from the textual data.To address the problem of the lack of fault text data sets for hoisting systems,this paper collects maintenance records data and existing fault literature of a large non-ferrous metal mining enterprise in northwest China,cleans and organizes these data,and establishes a fault text data set for mine hoisting systems.Experimental results on the self-built data set show that the proposed model has higher accuracy compared to traditional models.
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249