卫导受限下惯导/数据链/卫导紧组合导航方法  

INS/DL/GNSS tightly coupled integrated navigation method under GNSS restricted conditions

在线阅读下载全文

作  者:傅金琳[1,2] 王毅 阎磊 FU Jinlin;WANG Yi;YAN Lei(Tianjin Navigation Instruments Research Institute,Tianjin 300131,China;Laboratory of Science and Technology on Marine Navigation and Control CSSC,Tianjin 300131,China;School of Electronic Information Engineering,Tianjin Vocational Institute,Tianjin 300410,China)

机构地区:[1]天津航海仪器研究所,天津300131 [2]中船集团航海保障技术实验室,天津300131 [3]天津职业大学电子信息工程学院,天津300410

出  处:《舰船科学技术》2024年第13期141-145,共5页Ship Science and Technology

基  金:中船集团预研项目(626010306)。

摘  要:针对卫导受限场景中,导航系统精度难以满足要求的问题,提出一种惯导/数据链/卫导紧组合算法,该算法采用卫导接收机和数据链定位解算之前的伪距信息和无线测距信息与惯导信息融合对惯导误差进行修正,只要存在卫导可见星或者数据链源节点即可进行信息融合,最大程度上利用场景中的导航观测量,改善了导航信息品质。试验结果表明,在数据链通信良好的情况下,增加有限的卫导观测量能够改善导航系统精度;在数据链弱联通的情况下,通过有限卫导观测量的引入使得导航系统能够持续输出高精度的导航信息。In order to meet the accuracy requirements of navigation systems under GNSS restricted conditions,an inertial navigation system(INS)/data link(DL)/Global Navigation Satellite System(GNSS)tightly coupled integrated algorithm is proposed.This algorithm corrects the INS error by fusing the pseudo range information of GNSS receiver and wireless ranging information of DL positioning with INS information.As long as there are GNSS visible satellites or DL source nodes,information fusion can be carried out,maximizing the use of navigation observations in the scene and improving the quality of navigation information.The experimental results indicated that adding limited satellite observation measurements could improve the accuracy of the navigation system under good data link communication.In the case of weak data link connectivity,the introduction of limited satellite observation measurements enabled the navigation system to continuously output high-precision navigation information.

关 键 词:卫导受限 数据链 紧组合 弱联通 

分 类 号:TN965[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象