基于BP神经网络的粮食-耕地生态安全耦合协调研究  被引量:1

Research on Coupling Coordination of Food-Arable Land Ecological Security Based on BP Neural Network

在线阅读下载全文

作  者:黄永诗语 曾莹[1] HUANG Yongshiyu;ZENG Ying(School of Science,Hubei Univ.of Tech.,Wuhan 430068,China)

机构地区:[1]湖北工业大学理学院,湖北武汉430068

出  处:《湖北工业大学学报》2024年第4期106-111,共6页Journal of Hubei University of Technology

基  金:湖北省教育厅项目(19ZD108);湖北工业大学横向科研项目(2017124)。

摘  要:通过选取我国长江经济带11省市2011-2020年的面板数据构建指标评价体系,运用BP神经网络评价粮食安全和耕地生态安全,建立耦合协调度模型进行分析,最后运用BP神经网络进行预测。分析结果表明:研究期内,长江经济带粮食安全和耕地生态安全均取得了不同程度的提升,粮食-耕地生态安全耦合协调发展水平也由2011年的轻度失调水平发展到了2020年的中级协调水平,预测在2025年能达到良好协调水平,但耦合协调度存在区域差异。因此,长江经济带各省应该协同合作,根据各地资源优势和实际情况制定合理的策略,促进粮食-耕地生态安全协调发展。By selecting the panel data of 11 provinces and cities in the Yangtze River Economic Belt from 2011 to 2020,the index evaluation system was constructed,the BP neural network was used to evaluate food security and cultivate land ecological security,the coupling coordination model was established for analysis,and finally the BP neural network was used to make predictions.The analysis results show that during the study period,food security and cultivated land ecological security in the Yangtze River Economic Belt have been improved to varying degrees,and the level of coupled and coordinated development of food cultivated land ecological security has also developed from a mild imbalance level in 2011 to an intermediate coordination level in 2020,and it is predicted that it can reach a good coordination level in 2025,but there are regional differences in the degree of coupling coordination.Therefore,the provinces of the Yangtze River Economic Belt should work together to formulate reasonable strategies according to the resource advantages and actual conditions of each region to promote the coordinated development of food arable land ecological security.

关 键 词:粮食安全 耕地生态安全 BP神经网络 耦合协调 

分 类 号:F32[经济管理—产业经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象