检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘昭 刘彬 程中华 艾艳松 曹彦宁 马维宁 李明雨 Zhao Liu;Bin Liu;Zhonghua Cheng;Yansong Ai;Yanning Cao;Weining Ma;Mingyu Li(Army Engineering University(Shijiazhuang Campus),Shijiazhuang Hebei;Army Infantry College(Shijiazhuang Campus),Shijiazhuang Hebei)
机构地区:[1]陆军工程大学(石家庄校区),河北石家庄 [2]陆军步兵学院(石家庄校区),河北石家庄
出 处:《建模与仿真》2024年第4期4625-4638,共14页Modeling and Simulation
摘 要:设备管理与维修培训领域,目前缺乏对受训者培训效果的评估方法,针对这一问题,建立了基于BP神经网络的设备管理与维修人员培训效果评估模型,利用麻雀搜索算法(SSA)对BP神经网络进行全局优化。实验结果表明,麻雀优化算法将误差值收敛至0.5以下。经过与其他模型对比测试,改进BP神经网络模型在R2、精度和召回率上表现优异。模型具有可重复性,在训练和测试集上的实验结果稳定,可以为设备管理与维修培训效果评估提供支持。In the field of equipment management and maintenance training,there is a lack of methods to assess the training effect of trainees,to address this problem.Thus,a BP neural network-based model for assessing the training effect of equipment management and maintenance personnel was established,and a global optimisation of the BP neural network was carried out by using the Sparrow Search Algorithm(SSA).The experimental results show that the sparrow optimisation algorithm converges the error value to below 0.5.After comparison testing with other models,the improved BP neural network model performs well in terms of R2,precision and recall.The model is reproducible and the experimental results are stable on both training and test sets,which can support the evaluation of equipment management and maintenance training effectiveness.
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.149.30