融合时序Sentinel数据多特征优选的南方丘陵区油茶种植区提取  被引量:1

Extraction of Camellia oleifera Planting Areas in Southern Hilly Area by Combining Multi-features of Time-series Sentinel Data

在线阅读下载全文

作  者:李恒凯[1] 王洁[1] 周艳兵 龙北平 LI Hengkai;WANG Jie;ZHOU Yanbing;LONG Beiping(School of Civil and Surveying and Mapping Engineering,Jiangxi University of Science and Technology,Ganzhou 341000,China;Research Center of Information Technology,Beijing Academy of Agriculure and Forestry Sciences,Bejing 100097,China;Geographic Information Engineering Brigade,Jiangxi Provincial Bureau of Geology,Nanchang 330001,China)

机构地区:[1]江西理工大学土木与测绘工程学院,赣州341000 [2]北京市农林科学院信息技术研究中心,北京100097 [3]江西地质局地理信息工程大队,南昌330001

出  处:《农业机械学报》2024年第7期241-251,共11页Transactions of the Chinese Society for Agricultural Machinery

基  金:江西省自然科学基金项目(20232ACB203025);江西省自然科学基金青年项目(20224BAB213038);江西省高校人文社科研究项目(JC21123);自然资源部重点实验室开放基金项目(MEMI-2021-2022-10)。

摘  要:油茶作为江西省经济林树种之一,也是江西省特色优势产业,准确获取其空间分布在产量估算、生产管理和政策制定等方面具有重要意义。本研究针对南方多云多雨气候导致光学影像不足,以及丘陵山区地形破碎问题,以江西省宜春市袁州区为研究区,采用时序Sentinel系列影像数据和SRTM DEM数据为数据源,构建和优选了光谱特征、植被-水体指数、红边指数、雷达特征、地形特征和纹理特征共125个特征变量,其中,纹理特征采用累计差法(Δf)对比15种不同尺度窗口,计算Sentinel-1和Sentinel-2影像最佳纹理特征。基于ReliefF特征优选算法和随机森林分类算法,设计了8种特征组合方案开展实验,探讨不同特征类型对油茶提取精度的影响。结果表明:利用累计差法计算出的Sentinel-1和Sentinel-2的最佳纹理特征窗口尺寸均为35×35,最佳纹理特征组合为均值(Mean)、方差(Variance)和对比度(Contrast);在光谱特征、植被-水体指数的基础上加入不同特征对油茶进行分类,不同类型特征对油茶提取的有利程度由大到小依次为S2纹理特征、S1纹理特征、地形特征、雷达特征、红边指数,相比于单一光谱和指数特征,纹理特征的加入可大幅度提高分类精度。多特征协同分类结果优于单特征分类结果,基于特征优选的油茶提取精度最高;基于ReliefF算法特征优选后的方案精度最高,总体精度为88.29%,Kappa系数为0.81。本研究利用时序Sentinel系列遥感影像和DEM地形数据,构建了针对多云雨南方丘陵山区的大范围油茶遥感提取方法,可为中国南方丘陵区域油茶资源调查与监测提供参考。As one of the economic forest species in Jiangxi Province,Camellia oleifera is also a characteristic advantageous industry in Jiangxi Province,and it is of great significance to accurately obtain its spatial distribution in terms of yield estimation,production management and policy formulation.In response to the lack of optical images due to the cloudy and rainy climate in the south,as well as the problem of fragmented terrain in hilly and mountainous areas,Yuanzhou District,Yichun City,Jiangxi Province,was taken as the study area.Using time-series Sentinel satellite imagery and SRTM DEM data as data sources,a total of 125 feature variables were constructed and selected,including spectral features,vegetation-water indices,red edge indices,radar features,terrain features and texture features.Among them,the texture features were calculated by comparing 15 different scale windows by using the cumulative difference method to calculate the best texture features for Sentinel-1 and Sentinel-2 images.Based on ReliefF feature preference algorithm and random forest classification algorithm,eight feature combination schemes were designed to carry out experiments to explore the impact of different feature types on the extraction accuracy of Camellia oleifera.The results showed that the optimal texture feature window for both Sentinel-1 and Sentinel-2 calculated experimentally by using the cumulative difference method was 35×35,and the optimal texture feature combinations were mean,variance and contrast.Building upon spectral features and vegetation-water indices,the incorporation of different features for Camellia oleifera classification demonstrated varying degrees of effectiveness.The favorability ranking of different feature types for Camellia oleifera extraction from large to small was as follows:S2 texture features,S1 texture features,terrain features,radar features and red edge index.Compared with single-spectrum and index features,the inclusion of texture features significantly enhanced classification accuracy.The sy

关 键 词:油茶 种植区提取 Sentinel-1 Sentinel-2 特征优选 累计差 RELIEFF算法 

分 类 号:TP753[自动化与计算机技术—检测技术与自动化装置] S127[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象