检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李小萍 李志坚[1] LI Xiaoping;LI Zhijian(Institute of Theoretical Physics,Shanxi University,Taiyuan 030006,China)
机构地区:[1]山西大学理论物理研究所,山西太原030006
出 处:《山西大学学报(自然科学版)》2024年第4期786-791,共6页Journal of Shanxi University(Natural Science Edition)
基 金:国家自然科学基金(12147215)。
摘 要:本文推广一维无限长格点线上三周期量子行走模型,引入两个非对称相位累积算符,计算系统的能带结构和表征系统拓扑特性的绕数,用量子行走过程中累积的相位表示出绕数。进一步引入含时相位,研究三周期量子行走的动力学,发现其概率分布表现出类似一维晶格中电子在电场作用下的布洛赫振荡行为。特别地,三周期量子行走的拓扑绕数与布洛赫振荡一个周期内的转折点数相等,从系统动力学演化的角度表征了系统的拓扑特性。In this work,the three-period quantum walk model on one-dimensional infinite lattice line is extended to include two asymmetric phase-accumulating operators.The energy band structure and the winding number,which characters the topological properties of the system,are calculated.The winding number is represented by the phase accumulation in the process of quantum walk.Furthermore,we introduce the time-dependent phase and investigate the dynamics of three-period quantum walk.It is found that the probability distribution behaves Bloch oscillation as that an electron subjected to a constant electric field in a one-dimensional lattice.In particular,the topological winding number of three-period quantum walk is equal to the number of turning points over a period of Bloch oscillation.As a conclusion,the topological properties of the system can be viewed from the point of system dynamical evolution.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7