检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汪沁 程晨 施海亮[2,3] 王先华 叶函函 孙熊伟 朱锋 吴时超 熊伟 Wang Qin;Cheng Chen;Shi Hailiang;Wang Xianhua;Ye Hanhan;Sun Xiongwei;Zhu Feng;Wu Shichao;Xiong Wei(School of Environmental Science and Optoelectronic Technology,University of Science and Technology of China,Hefei 230026,Anhui,China;Anhui Institute of Optics and Fine Mechanics,Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230031,Anhui,China;Anhui Province Key Laboratory of Optical Quantitative Remote Sensing,Chinese Academy of Sciences,Hefei 230031,Anhui,China)
机构地区:[1]中国科学技术大学环境科学与光电技术学院,安徽合肥230026 [2]中国科学院合肥物质科学研究院安徽光学精密机械研究所,安徽合肥230031 [3]光学定量遥感安徽省重点实验室,安徽合肥230031
出 处:《光学学报》2024年第12期112-121,共10页Acta Optica Sinica
基 金:国家自然科学基金(42105082)。
摘 要:利用AOD-AROD气溶胶分类方法,选用MODIS数据,分析研究区域气溶胶模型的年际变化规律。在规律不明显的月份,分析了气象要素和气溶胶源对模型的影响,构建了基于随机森林方法的多时相气溶胶模型评估方法,即后向轨迹与大气概率分布场分析方法,并分析了多时相气溶胶模型评估方法的准确性,讨论误差原因。使用所提方法评估了香河地区的气溶胶模型,并使用TROPOMI L1B数据对评估结果进行验证。研究结果显示,采用该模型对香河地区的气溶胶类型进行评估的准确度为71.04%,辐亮度模拟的平均误差率减少了38.25%,表明该方法能有效提高气溶胶模型选择的准确性。Objective Atmospheric aerosol particles refer to various solid,liquid,and solid-liquid mixed particles suspended in the atmosphere,with particle sizes generally ranging from 0.001μm to 100μm.These particles possess distinct physical and chemical properties that differ from other gas molecules in the atmosphere.As the concentration of aerosol particles in the atmosphere reaches certain thresholds,they exert a pronounced influence on radiation transmission.Moreover,the composition of aerosols undergoes conspicuous temporal and spatial variations,influenced by many factors such as aerosol source distribution,underlying surface composition,season,and meteorological conditions.To facilitate calculation and research,several typical aerosol models are usually given through systematic observation experiments,considering the two premises of aerosol composition and sampling area.These models provide very convenient data for radiative transfer calculations.However,different aerosol models have significant effects on radiative transfer and cannot be ignored.Therefore,accurately selecting an appropriate aerosol radiative transfer model under different circumstances is crucial.Methods Our study is based on the AOD-AROD classification model and integrates it with atmospheric radiative transfer calculations.Using the above model based on MODIS aerosol data in typical areas from 2018 to 2022,the inter-annual patterns of aerosol model changes are calculated by month.We deeply explore the connections between meteorological elements,aerosol source locations,and aerosol models through the random forest method.A multi-temporal aerosol model judgment method is developed,considering the temporal changes of meteorological elements,thus improving the applicability and accuracy of the method.Backward trajectory analysis and atmospheric probability distribution fields are utilized for verification and optimization,enhancing the correlation between meteorological elements and aerosol models.Finally,the aerosol model judgment results are va
关 键 词:大气光学 气溶胶模型 大气辐射传输计算 多源数据 气象要素 随机森林
分 类 号:P407.4[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222