Detection of the farmland plow areas using RGB-D images with an improved YOLOv5 model  

在线阅读下载全文

作  者:Jiangtao Ji Zhihao Han Kaixuan Zhao Qianwen Li Shucan Du 

机构地区:[1]College of Agricultural Equipment Engineering,Henan University of Science and Technology,Luoyang 471003,Henan,China [2]Science&Technology Innovation Center for Completed Set Equipment,Longmen Laboratory,Luoyang 471023,Henan,China [3]Collaborative Innovation Center of Machinery Equipment Advanced Manufacturing of Henan Province,Luoyang 471003,Henan,China [4]School of Art and Design,Henan University of Science and Technology,Luoyang 471003,Henan,China

出  处:《International Journal of Agricultural and Biological Engineering》2024年第3期156-165,共10页国际农业与生物工程学报(英文)

基  金:financially supported by the National Key Research and Development Program(NKRDP)projects(Grant No.2023YFD2001100);Major Science and Technology Programs in Henan Province(Grant No.221100110800);Major Science and Technology Special Project of Henan Province(Longmen Laboratory First-class Project)(Grant No.231100220200).

摘  要:Recognition of the boundaries of farmland plow areas has an important guiding role in the operation of intelligent agricultural equipment.To precisely recognize these boundaries,a detection method for unmanned tractor plow areas based on RGB-Depth(RGB-D)cameras was proposed,and the feasibility of the detection method was analyzed.This method applied advanced computer vision technology to the field of agricultural automation.Adopting and improving the YOLOv5-seg object segmentation algorithm,first,the Convolutional Block Attention Module(CBAM)was integrated into Concentrated-Comprehensive Convolution Block(C3)to form C3CBAM,thereby enhancing the ability of the network to extract features from plow areas.The GhostConv module was also utilized to reduce parameter and computational complexity.Second,using the depth image information provided by the RGB-D camera combined with the results recognized by the YOLOv5-seg model,the mask image was processed to extract contour boundaries,align the contours with the depth map,and obtain the boundary distance information of the plowed area.Last,based on farmland information,the calculated average boundary distance was corrected,further improving the accuracy of the distance measurements.The experiment results showed that the YOLOv5-seg object segmentation algorithm achieved a recognition accuracy of 99%for plowed areas and that the ranging accuracy improved with decreasing detection distance.The ranging error at 5.5 m was approximately 0.056 m,and the average detection time per frame is 29 ms,which can meet the real-time operational requirements.The results of this study can provide precise guarantees for the autonomous operation of unmanned plowing units.

关 键 词:plow areas RGB-D camera YOLO object segmentation contour boundary average distance 

分 类 号:S24[农业科学—农业电气化与自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象