基于音频特征的水车室工作状态异常检测  被引量:2

Audio Feature-based Anomaly Detection of Working Status of Turbine Room

在线阅读下载全文

作  者:曾广栋 魏学锋 何林 孙长江 张旋 ZENG Guang-dong;WEI Xue-feng;HE Lin;SUN Chang-jiang;ZHANG Xuan(Xiluodu Hydropower Plant,Yongshan 657300,China;Tsinghua AI Plus,Beijing 100084,China)

机构地区:[1]溪洛渡水力发电厂,云南永善657300 [2]北京华控智加科技有限公司,北京100084

出  处:《水电能源科学》2024年第8期168-172,共5页Water Resources and Power

基  金:三峡金沙江川云水电开发有限公司永善溪洛渡电厂科研项目(4122020006)。

摘  要:水电站的水车室包含轴承和顶盖等机械设备,受水力因素影响,水车室的异常工作会带来较大的安全隐患,基于大数据分析的精确维护对于水车室的可靠运行至关重要。针对水车室的异常工作状态,通过模型训练、特征工程和分类模型的开发等过程,采用STFT、Log-Mel、MFCC等方法对音频数据进行了预处理,建立了基于音频数据的异常检测模型,并对溪洛渡水电站水车室工作状态进行了异常检测。结果表明,Log-Mel方法具有有效性。研究结果不仅降低了异常检测的成本,还为水电机组的健康监测提供了参考。The turbine room of hydropower station contains mechanical equipment such as bearings and top cover.Due to the influence of hydraulic factors,the abnormal operation of the turbine room causes a large safety risk.Accurate maintenance based on big data analysis is essential for the reliable operation of turbine room.This paper takes the abnormal working condition of the turbine room as the research object and establishes an abnormality detection model based on audio data.The process of building the detection model includes model training,feature engineering and development of classification model.The feature engineering uses methods such as STFT,Log-Mel and MFCC.The experimental results prove the effectiveness of the Log-Mel method through a case study conducted at the Xiluodu hydropower station.This study not only achieves the low-cost purpose of anomaly detection,but also provides a valuable reference for the health monitoring of hydropower units.

关 键 词:音频数据 水车室 STFT Log-Mel 梅尔频率倒频谱系数(MFCC) 时域特征 支持向量机 

分 类 号:TV738[水利工程—水利水电工程] TK730[交通运输工程—轮机工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象