检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王艳群 WANG Yanqun(Lanzhou JiaoTong University,Lanzhou 730070,China)
机构地区:[1]兰州交通大学,甘肃兰州730070
出 处:《无线互联科技》2024年第14期82-84,95,共4页Wireless Internet Technology
摘 要:遥感图像分割技术是遥感领域中一项至关重要的任务,对地表覆盖分类、资源监测和环境评估等领域具有显著影响。文章总结了深度学习在遥感图像分割中的应用现状,深入剖析了深度学习在遥感图像分割中所面临的挑战,并提出了一系列深度学习应对挑战的策略,旨在提升遥感图像分割的精度、效率和可解释性。文章对深度学习在遥感图像分割领域的应用前景进行了预测。随着技术的进步,深度学习在遥感图像分割的应用将更加广泛。Remote sensing image segmentation is a crucial task in the field of remote sensing,significantly impacting areas such as land cover classification,resource monitoring,and environmental assessment.This paper summarizes the current state of applications of deep learning in remote sensing image segmentation and provides an in-depth analysis of the challenges faced in this domain.A suite of strategies is proposed to address these challenges,with the aim of enhancing the accuracy,efficiency,and interpretability of remote sensing image segmentation through deep learning.The paper predicts the future prospects of deep learning applications in the field of remote sensing image segmentation.With technological advancements,the application of deep learning in remote sensing image segmentation is expected to expand further.
关 键 词:遥感图像分割 深度学习 数据增强 模型设计 可解释性
分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49