深度学习模型在遥感图像分割中的应用与挑战  被引量:1

Application and challenge of deep learning model in remote sensing image segmentation

在线阅读下载全文

作  者:王艳群 WANG Yanqun(Lanzhou JiaoTong University,Lanzhou 730070,China)

机构地区:[1]兰州交通大学,甘肃兰州730070

出  处:《无线互联科技》2024年第14期82-84,95,共4页Wireless Internet Technology

摘  要:遥感图像分割技术是遥感领域中一项至关重要的任务,对地表覆盖分类、资源监测和环境评估等领域具有显著影响。文章总结了深度学习在遥感图像分割中的应用现状,深入剖析了深度学习在遥感图像分割中所面临的挑战,并提出了一系列深度学习应对挑战的策略,旨在提升遥感图像分割的精度、效率和可解释性。文章对深度学习在遥感图像分割领域的应用前景进行了预测。随着技术的进步,深度学习在遥感图像分割的应用将更加广泛。Remote sensing image segmentation is a crucial task in the field of remote sensing,significantly impacting areas such as land cover classification,resource monitoring,and environmental assessment.This paper summarizes the current state of applications of deep learning in remote sensing image segmentation and provides an in-depth analysis of the challenges faced in this domain.A suite of strategies is proposed to address these challenges,with the aim of enhancing the accuracy,efficiency,and interpretability of remote sensing image segmentation through deep learning.The paper predicts the future prospects of deep learning applications in the field of remote sensing image segmentation.With technological advancements,the application of deep learning in remote sensing image segmentation is expected to expand further.

关 键 词:遥感图像分割 深度学习 数据增强 模型设计 可解释性 

分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象