基于自然语言处理的程序代码缺陷检测  

在线阅读下载全文

作  者:鲁雪纯 周玲玲 

机构地区:[1]郑州理工职业学院,河南郑州450000 [2]郑州工商学院,河南郑州450000

出  处:《信息记录材料》2024年第8期174-176,共3页Information Recording Materials

摘  要:本研究深入探讨了一种基于循环神经网络(recurrent neural network,RNN)的程序代码缺陷检测方法,并将其应用于公共漏洞和暴露(common vulnerabilities and exposures,CVE)数据集。首先,设计一个完整的程序代码缺陷检测框架。其次,通过引入L2正则化对基于RNN的模型进行优化,以提高模型的泛化能力和抗过拟合能力。最后,采用CVE数据集对所提出的方法进行测试,并与传统RNN方法进行对比。结果表明,该方法在准确率、精确率、召回率和F1值等评价指标上均优于传统RNN方法,具有更好的性能和效果。

关 键 词:自然语言处理 代码检测 循环神经网络 L2正则化 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象