检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邓杰 冷先凯 Deng Jie;Leng Xiankai(China Construction Third Bureau Intelligent Technology Co.,Ltd.,Wuhan 430074,China)
出 处:《绿色建造与智能建筑》2024年第8期89-91,139,共4页Green Construction and Intelligent Building
摘 要:随着我国在智能化建造领域的不断发展,大多数前端硬件设备已经可以通过各种通讯技术实现智能化控制,其中就包括智能照明设备。智能照明设备的应用具有数量多、分布区域广的特点,且设备长期运行过程中必然有突发事故、老化等情况,而现有技术存在无法实时确定设备异常状况,导致需要定期检查维护等问题。因此提出一种基于GMM的智能照明系统维护性预测模型,采用ReliefF算法进行特征选择,有效降低智能照明设备检修频率,确保设备正常运行的稳定性和安全性。且通过对比实验获取了较好的效果,证明了该方法的有效性和可行性,一定程度上减少了人力成本,同时为进一步指导智能建造提供了实验基础和理论依据。With the continuous development of intelligent construction in China,most front-end hardware devices can now achieve intelligent control through various communication technologies.including smart lighting equipment.The application of smart lighting equipment is characterized by a large number and wide distribution.During long-term operation,these devices are prone to sudden accidents and aging.Existing technologies cannot determine equipment abnormalities in real time.leading to the need for regular inspections and maintenance.Therefore,a GMM-based maintenance prediction model for smart lighting systems is proposed,using the ReliefF algorithmforfeature selection.This model effectively reduces the maintenance frequency of smart lighting equipment,ensuring the stability and safety of its normal operation.Comparative experiments have shown better results,proving the effectiveness and feasibility of the method.It reduces labor costs to some extent and provides an experimental foundation and theoretical basis forfurther guidance in intelligent construction.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222