检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李强强 李小军 李轶鲲 杨树文 杨睿哲 LI Qiangqiang;LI Xiaojun;LI Yikun;YANG Shuwen;YANG Ruizhe(Faculty of Geomatics,Lanzhou Jiaotong University,Lanzhou 730070,China;National-local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring,Lanzhou 730070,China;Key Laboratory of Science and Technology in Surveying&Mapping,Gansu Province,Lanzhou 730070,China)
机构地区:[1]兰州交通大学测绘与地理信息学院,兰州730070 [2]地理国情监测技术应用国家地方联合工程研究中心,兰州730070 [3]甘肃省测绘科学与技术重点实验室,兰州730070
出 处:《地球信息科学学报》2024年第8期1926-1940,共15页Journal of Geo-information Science
基 金:国家重点研发计划项目(2022YFB3903604);国家自然科学基金项目(42161069、41861055);中国博士后基金项目(2019M653795)。
摘 要:随着遥感平台日新月异,遥感图像数量也呈指数级地增长,如何从遥感大数据中筛选出所需遥感图像,已成为遥感应用亟待解决核心问题之一。目前利用深度卷积神经网络获取图像深度特征被认为是图像检索中最为有效的方法。然而,由于其特征维度过高从而导致相似性度量困难,降低了检索的速度和精度。为此,本文提出了一种结合自适应膨胀卷积和结构嵌入网络的非对称哈希遥感图像检索方法。该方法首先设计了自适应膨胀卷积模块,该模块能够在不增加额外模型参数同时自适应地捕捉遥感图像的多尺度特征;其次,针对遥感图像中的结构信息提取不足问题,对已有的结构嵌入模块进行了优化改进,改进后模块能够有效提取遥感图像中的几何结构特征;最后针对类内差异性和类间相似性导致的检索效率低下问题,引入了成对相似性约束,使原始特征空间中遥感图像之间的相似性能在哈希空间中得到保留。通过在4个不同数据集上的对比实验,验证了本文方法优于现有的深度哈希图像检索方法。同时,通过消融实验验证了所提模型中各模块的有效性。With the rapid changes in remote sensing platforms,there is a noticeable exponential increase in the quantity of remote sensing images.Choosing the appropriate remote sensing images from extensive remote sensing big data is now a fundamental challenge in remote sensing applications.Currently,utilizing deep Convolutional Neural Networks(CNNs) for extracting deep features from images has become the main approach for remote sensing image retrieval due to its effectiveness.However,the high feature dimensions pose challenges for similarity measurement in the image retrieval,resulting in decreased processing speed and retrieval accuracy.The hash method maps images into compact binary codes from a high-dimensional space,which can be used in remote sensing image retrieval to efficiently reduce feature dimensions.Therefore,this paper proposes a ResNetbased adaptive dilated and structural embedding asymmetric hashing algorithm for the remote sensing image retrieval.Firstly,an adaptive dilated convolution module is designed to adaptively capture multi-scale features of remote sensing images without introducing additional model parameters.Secondly,to address the issue of insufficient extraction of structural information in remote sensing imagery,the current structural embedding module has been optimized and improved to effectively extract geometric structure features from remote sensing images.Lastly,to tackle the problem of low retrieval efficiency caused by intra-class differences and inter-class similarities,pairwise similarity-based constraints are introduced to preserve the similarity of remote sensing images in both the original feature space and the hash space.Experimental comparisons with four datasets(i.e.UCM,NWPU,AID,and PatternNet) were conducted to demonstrate the effectiveness of the proposed method.The mean average precision rates for 64-bit hash codes were 98.07%,93.65%,97.92%,and 97.53% with these four datasets,respectively,proving the superiority of our proposed approach over other existing deep hashing imag
关 键 词:遥感图像检索 残差网络 深度哈希 非对称哈希 自适应膨胀 结构编码 多尺度特征
分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7