检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:丁雷 杜鹏 孙志杰 DING Lei;DU Peng;SUN Zhijie(Department of Intelligent Manufacturing,Shandong Vocational College of Information Technology,Weifang,Shandong 261100,China)
机构地区:[1]山东信息职业技术学院智能制造系,山东潍坊261100
出 处:《自动化应用》2024年第14期180-182,共3页Automation Application
摘 要:详细综述了基于机器视觉的亚像素边缘检测算法,旨在全面总结该领域的研究现状和进展。首先,介绍了亚像素边缘检测的重要性及其在图像处理和计算机视觉领域中的广泛应用;其次,归纳了不同亚像素边缘检测方法,包括基于梯度信息、基于模型拟合和基于最小二乘法等;然后,分析了各种方法的优缺点,并对其比较和评价;再次,提出了当前亚像素边缘检测算法面临的挑战和研究方向,如提高算法的鲁棒性、适应性和效率等;最后,强调了该算法的研究意义和价值,提出了未来研究的发展方向。This paper provides a detailed overview of sub-pixel edge detection algorithms based on machine vision,aiming to comprehensively summarize the research status and progress in this field.Firstly,the importance of sub-pixel edge detection and its wide applications in image processing and computer vision are introduced.Secondly,different sub-pixel edge detection methods were summarized,including those based on gradient information,model fitting,and least squares method.Then,the advantages and disadvantages of various methods were analyzed,and they were compared and evaluated.Once again,the challenges and research directions faced by current sub-pixel edge detection algorithms were proposed,such as improving the robustness,adaptability,and efficiency of the algorithms.Finally,the research significance and value of the algorithm were emphasized,and future research directions were proposed.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.228.200