检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘炜清 贾赫成 LIU Weiqing;JIA Hecheng(School of Information Science and Technology,Fudan University,Shanghai 200433,China)
机构地区:[1]复旦大学信息科学与工程学院,上海200433
出 处:《上海航天(中英文)》2024年第4期163-172,共10页Aerospace Shanghai(Chinese&English)
摘 要:随着城市化和遥感技术的发展,高分辨率遥感图像地物提取任务也越来越具有挑战性。针对现有的方法无法捕捉图像中长距离的空间关系,以及遥感图像存在误检漏检等问题,提出了结合基于非局部注意力的多层残差遥感图像建筑物提取方法(NAMR-Net)。在改进后的U-Net的结构基础上,引入了自适应非局部注意力模块(ANAB),以及多层残差学习模块(MRLB)。因此,网络可以从不同的卷积层中融合长距离像素间的特征,并通过2阶段的训练,有效地提升建筑物的分割质量,并在2个公开数据集WHU、Massachusetts上进行了实验。结果表明:NAMR-Net可以实现遥感图像中建筑物目标的高质量分割,并优于近年来几种较先进的方法。With the development of urbanization and remote sensing technology,the tasks of extracting objects from high-resolution remote sensing images have become increasingly challenging.To address the limitation in existing methods,e.g.,the inability to capture long-range spatial relationships and false positives and negatives in remote sensing images,in this paper,a method for building extraction from remote sensing images based on non-local attention and milti-layer residuals is proposed,which is also called the non-local attention guided multi-layer residual net(NAMR-Net).Built upon the refined U-Net architecture,the NAMR-Net incorporates an adaptive non-local attention block(ANAB)and a multi-layer residual learning block(MRLB).Consequently,the network can integrate features from distant pixels at different convolutional layers,and effectively enhance the segmentation quality of buildings through a two-stage training process.Experiments are conducted on two publicly available datasets,i.e.,WHU and Massachusetts.The results demonstrate that the NAMR-Net achieves high-quality segmentation of building targets in remote sensing images and outperforms several state-of-the-art methods.
关 键 词:高分辨率遥感图像 建筑物提取 深度学习 残差学习 非局部注意力
分 类 号:TP7[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.147.87