检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李菲 苏兆品[1,2] 王年松[3] 杨波 张国富[1,2] LI Fei;SU Zhaopin;WANG Niansong;YANG Bo;ZHANG Guofu(School of Computer Science and Information Engineering,Hefei University of Technology,Hefei 230601,Anhui,China;Anhui Province Key Laboratory of Industry Safety and Emergency Technology,Hefei University of Technology,Hefei 230601,Anhui,China;Institute of Forensic Science,Department of Public Security of Anhui Province,Hefei 230000,Anhui,China)
机构地区:[1]合肥工业大学计算机与信息学院,安徽合肥230601 [2]合肥工业大学工业安全与应急技术安徽省重点实验室,安徽合肥230601 [3]安徽省公安厅物证鉴定管理处,安徽合肥230000
出 处:《应用科学学报》2024年第4期709-722,共14页Journal of Applied Sciences
基 金:安徽省重点研究与开发计划(No.202004d07020011,No.202104d07020001);广东省类脑智能计算重点实验室开放课题(No.GBL202117);中央高校基本科研业务费专项资金项目(No.PA2021GDSK0073,No.PA2021GDSK0074,No.PA2022GDSK0037)资助。
摘 要:针对现有说话人确认任务基于自然语音条件下并不适用于智能合成语音的问题,提出一种基于Group-Res2Block的智能合成语音说话人确认方法。首先,设计了Group-Res2Block结构,在Res2Block的基础上将当前分组与相邻前后分组进行合并形成新的分组,以增强说话人局部特征的上下文联系;其次,设计了并行结构的多尺度通道注意力特征融合机制,利用不同大小卷积核实现同一层级的特征在通道维度的特征选择,以获取更具表现力的说话人特征,避免信息冗余;最后,设计了串行结构的多尺度层注意力特征融合机制,构建层结构,将深浅层特征整体进行融合并赋予不同权重,以获取最优的特征表达。为验证所提出特征提取网络的有效性,构建了中英文两种智能合成语音数据集进行消融实验和对比实验。结果表明本文方法在该任务的评价指标精确度(accuracy,ACC)、等错误率(equal error rate,EER)和最小检测代价函数(minimum detection cost function,minDCF)上是最优的。此外,通过对模型泛化性能进行测试,验证了本文方法对未知智能语音算法的适用性。The existing speaker verification task is primarily based on natural speech conditions,rendering it unsuitable for intelligent speech synthesis.In response,this paper pro-poses an intelligent synthetic voice speaker verification method based on Group-Res2Block.Firstly,the Group-Res2Block structure is designed,integrating the current group with adjacent front and rear groups to foster a stronger contextual connection of the speaker’s local characteristics.Secondly,a multi-scale channel attention feature fusion mechanism with parallel structure is designed.This mechanism employs various-sized convolution kernels to select features of the same level in the channel dimension,thereby extracting more expressive speaker features and avoiding information redundancy.Finally,a multi-scale attention feature fusion mechanism of serial structure is designed,and a layer structure is constructed to integrate the deep and shallow features as a whole and give different weights to obtain the optimal feature expression.To verify the effectiveness of the pro-posed feature extraction network,this paper constructs two kinds of intelligent synthetic speech datasets in Chinese and English.Through ablation and comparative experiments,it is shown that the proposed method outperforms others on evaluation metrics such as accuracy(ACC),equal error rate(EER)and minimum detection cost function(minDCF)for the task.Furthermore,the test results of the generalization performance of the model verify its applicability to unknown intelligent speech algorithms.
关 键 词:说话人确认 智能合成语音 Group-Res2Block深度神经网络 多尺度特征 注意力机制
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] TN912.34[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.135.237