检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张怡琳 程国坚 余艾冰 Zhang Yilin;Cheng Guojian;Yu Aibing(Center for Simulation and Modelling of Particulate Systems,Southeast UniversityMonash University Joint Research Institute,Suzhou 215123,China)
机构地区:[1]东南大学-蒙纳什大学颗粒系统仿真与模拟联合研究中心,江苏苏州215123 [2]江苏省产业技术研究院工业过程模拟与优化研究所,江苏苏州215123
出 处:《水泥工程》2024年第4期12-18,41,共8页Cement Engineering
摘 要:随着城市化建设的大幅加快,混凝土作为最重要的建筑材料之一,在生产与施工过程中进行质量控制尤为重要。然而,传统的混凝土工作性能检测方法十分费时费力,并且检测结果的准确性受到人为操作因素的影响较大,不利于工程建设的安全与高效实施。本文提出了一种简便、高效的混凝土坍落度检测方法,采用深度学习对混凝土拌合物图像进行识别,达到快速检测混凝土坍落度的目的。本次采用了ResNet,ResNeXt,DenseNet和MobilenetV3架构进行图像分析,经过数据构建、模型训练和应用测试,分析结果证明了计算机视觉方法在混凝土坍落度检测过程中的有效性和准确性,促进建筑工程行业的数字化智能化技术应用进一步发展。In the context of accelerated urbanization,the quality of concrete,as one of the most extensively used building materials,is crucial for the safety and durability of construction projects.However,traditional methods for inspecting concrete workability are timeconsuming and often limited in accuracy due to improper operations.This research explores the potential application of deep learning technologies to enhance the efficiency and accuracy of concrete workability inspections.Specifically,the study introduces the use of ad⁃vanced neural network architectures,such as ResNet,ResNeXt,DenseNet,and MobilenetV3 models,implemented to detect and evalu⁃ate concrete slump values.Experimental results demonstrate that these models significantly improve the speed,accuracy,and cost-ef⁃fectiveness of concrete slump inspections.This study not only contributes to the technical fields of automated inspection and deep learn⁃ing but also supports sustainable development in the construction industry by advancing its technological framework.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49