检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:仲伟志[1] 何艺 段洪涛 万诗晴 范振雄 朱秋明[1] 林志鹏 ZHONG Weizhi;HE Yi;DUAN Hongtao;WAN Shiqing;FAN Zhenxiong;ZHU Qiuming;LIN Zhipeng(Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space,Ministry of Industry and Information Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China;State Radio Monitoring Center,Beijing 100144,China)
机构地区:[1]南京航空航天大学电磁频谱空间认知动态系统工业与信息化部重点实验室,南京211106 [2]国家无线电监测中心,北京100144
出 处:《电子与信息学报》2024年第8期3117-3125,共9页Journal of Electronics & Information Technology
基 金:江苏省重点研发计划(产业前瞻与关键核心技术)(BE2022067,BE2022067-1,BE2022067-3);国家自然科学基金(62271250);南京航空航天大学研究生科研与实践创新计划(xcxjh20231507)。
摘 要:为解决基于信道先验知识的联合波束赋形方法受限于多变的车辆与交通基础设施(V2I)通信场景且信道估计开销过大等问题,该文结合环境态势感知,提出一种基于无线传播链路预测的联合波束赋形方法。该方法首先利用射线追踪模拟器构建了可重构智能表面(RIS)辅助的V2I毫米波通信系统模型,通过改变环境态势以获取多样的无线传播链路数据来构建数据集。其次,使用该数据集训练基于机器学习的无线传播链路预测模型。最后,在最大发射功率约束条件下,构建了联合波束赋形问题模型,并基于预测结果采用交替迭代优化方法(AIOA)优化基站波束赋形矩阵和RIS相移矩阵,以实现同步通信车辆用户最小信干噪比(SINR)的最大化。仿真结果验证了该方法的有效性,通过引入非信道先验知识驱动,降低了信道探测开销,提高了该方法在V2I场景中的可行性。In order to address the limitations of the joint beamforming method based on channel prior knowledge,which is constrained by multivariate Vehicle-to-Infrastructure(V2I)communication scenes and suffers from large overhead caused by channel estimation,a wireless propagation link prediction-based joint beamforming method assisted by environmental situation awareness is proposed in this paper.Firstly,a model of Reconfigurable Intelligent Surface(RIS)assisted mmWave communication system for V2I networks is established using a ray tracer.To build a dataset,diverse data of wireless propagation links is obtained by changing the environmental situation.Then,this dataset is used to train a machine learning-based wireless propagation link prediction model.Finally,the joint beamforming problem under the constraint of maximum transmission power is modeled.Additionally,based on the prediction outcome,the beamforming matrix of base station and the phase shift matrix of RIS are optimized using Alternating Iterative Optimization Algorithm(AIOA)to maximize the minimum Signal to Interference plus Noise Ratio(SINR)among synchronous communication vehicle users.Simulation results validate the effectiveness of the proposed method.Introducing non-channel prior knowledge driven reduces channel detection overhead and improves feasibility in applying the proposed method to V2I scenes.
关 键 词:V2I通信 可重构智能表面 联合波束赋形 环境态势感知 信道预测
分 类 号:TN929.5[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49