检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴超 陈磊 刘渊 周绮凤 王奕首 WU Chao;CHEN Lei;LIU Yuan;ZHOU Qi-feng;WANG Yi-shou(AECC Hunan Aviation Powerplant Research Institute,Zhuzhou Hunan 412002,China;School of Aerospace Engineering,Xiamen University,Xiamen Fujian 361005,China)
机构地区:[1]中国航发湖南动力机械研究所,湖南株洲412002 [2]厦门大学航空航天学院,福建厦门361005
出 处:《航空发动机》2024年第4期30-37,共8页Aeroengine
基 金:国家级基础加强项目(2019-JCJQ-ZD-339-00)资助。
摘 要:针对现有数据驱动的航空发动机故障诊断算法易受飞行监控数据中冗余特征及噪声的干扰,不能及时修正监测数据中不平衡样本分布对模型泛化性能影响等问题,通过在支持向量机模型中引入特征增维和采用提取算法,提出基于特征优化和支持向量机的航空发动机气路故障诊断方法,并建立相应模型。将涡桨发动机及CFM56-7B发动机航后数据输入模型,分析与预测实际故障发生时刻,并将预测结果与真实结果进行比较,同时将其结果与采用随机森林等4种故障诊断方法所得结果进行对比验证。结果表明:特征优化算法的应用能显著缩短各类故障诊断方法运行时间20%以上;基于特征优化和支持向量机的故障诊断方法使预测准确率达99.8%;针对非平衡实测数据,特征优化算法和回归预测思想的引入能显著提高算法在不平衡数据集上的性能,与非回归算法相比故障检测率提高到91.67%。Aiming at the problems that existing data-driven aeroengine fault diagnosis algorithms are susceptible to the disruptive effects of redundant features and noise in flight monitoring data,and unable to timely address the impact of imbalanced sample distribution in monitoring data on the model's generalization performance,by introducing feature augmentation and using extraction algorithms in sup⁃port vector machine models,an aeroengine gas-path fault diagnosis method was proposed based on feature optimization and the support vector machine,and the corresponding model was established.A simulation dataset from a turboprop engine and a flight dataset from a CFM56-7B engine were input into the model to analyze and predict the fault occurrence time.The predicted results were compared with the actual results,and the latter compared with those obtained by four fault diagnosis methods such as random forest.The results show that the application of the feature optimization algorithm can significantly shorten the computational time of various fault diagnosing methods by more than 20%;the fault diagnosis method based on feature optimization and support vector machine achieves a prediction accuracy of 99.8%;for unbalanced measured data,the introduction of feature optimization algorithm and regression prediction can significantly improve the performance of the algorithm on imbalanced datasets,and the fault detection rate is improved to 91.67%compared with nonregression algorithms.
关 键 词:故障诊断 特征优化 支持向量机 主成分分析 深度自编码器 航空发动机
分 类 号:V231.1[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.219.203.214