A Feature Selection Method Based on Hybrid Dung Beetle Optimization Algorithm and Slap Swarm Algorithm  

在线阅读下载全文

作  者:Wei Liu Tengteng Ren 

机构地区:[1]School of Information Science and Engineering,Shenyang Ligong University,Shenyang,110158,China

出  处:《Computers, Materials & Continua》2024年第8期2979-3000,共22页计算机、材料和连续体(英文)

基  金:This research was funded by the Short-Term Electrical Load Forecasting Based on Feature Selection and optimized LSTM with DBO which is the Fundamental Scientific Research Project of Liaoning Provincial Department of Education(JYTMS20230189);the Application of Hybrid Grey Wolf Algorithm in Job Shop Scheduling Problem of the Research Support Plan for Introducing High-Level Talents to Shenyang Ligong University(No.1010147001131).

摘  要:Feature Selection(FS)is a key pre-processing step in pattern recognition and data mining tasks,which can effectively avoid the impact of irrelevant and redundant features on the performance of classification models.In recent years,meta-heuristic algorithms have been widely used in FS problems,so a Hybrid Binary Chaotic Salp Swarm Dung Beetle Optimization(HBCSSDBO)algorithm is proposed in this paper to improve the effect of FS.In this hybrid algorithm,the original continuous optimization algorithm is converted into binary form by the S-type transfer function and applied to the FS problem.By combining the K nearest neighbor(KNN)classifier,the comparative experiments for FS are carried out between the proposed method and four advanced meta-heuristic algorithms on 16 UCI(University of California,Irvine)datasets.Seven evaluation metrics such as average adaptation,average prediction accuracy,and average running time are chosen to judge and compare the algorithms.The selected dataset is also discussed by categorizing it into three dimensions:high,medium,and low dimensions.Experimental results show that the HBCSSDBO feature selection method has the ability to obtain a good subset of features while maintaining high classification accuracy,shows better optimization performance.In addition,the results of statistical tests confirm the significant validity of the method.

关 键 词:Feature selection dung beetle optimization KNN transfer function HBCSSDBO 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象