检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谢文茜 XIE Wen-xi(School of Economics and Management,Southwest Jiaotong University,Chendu 610031,China)
机构地区:[1]西南交通大学经济管理学院,四川成都610031
出 处:《物流工程与管理》2024年第6期83-86,共4页Logistics Engineering and Management
摘 要:针对无人机在城市物流配送环境下的配送中心选址-分配问题,文中综合考虑城市区域特点和无人机性能约束等方面,以建设成本、配送成本、耗电成本以及碳排放环境成本之和最小为目标构建多约束条件下的城市物流无人机配送中心选址-分配数学模型。然后,综合遗传算法和粒子群算法的优缺点,将遗传算法嵌入粒子群算法进行求解。最后,基于Python语言建立仿真环境,并通过算例求解和敏感性分析验证了文中模型和算法的有效性。Aiming at the location-allocation problem of unmanned aerial vehicle(UAV)distribution center in urban logistics distribution environment,this paper comprehensively considers the characteristics of urban areas and the performance constraints of UAV,and with the goal of minimizing the sum of construction cost,distribution cost,power consumption cost and environmental cost of carbon emission,a mathematical model of location-allocation of urban logistics UAV distribution center under multiple constraints was constructed.Then,combining the advantages and disadvantages of Genetic Algorithm(GA)and Particle Swarm Optimization algorithm(PSO),the GA is embedded into PSO algorithm to solve the problem.Finally,the simulation environment is established based on Python language,and the effectiveness of the model and algorithm are verified by example solving and sensitivity analysis.
分 类 号:U492.3[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200