检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蒋伟 徐韵扬 顾虎 秦鑫 JIANG Wei;XU Yunyang;GU Hu;QIN Xin(Hangzhou Institute of Quality&Metrology,Hangzhou 310019,China)
出 处:《纺织科技进展》2024年第8期17-20,共4页Progress in Textile Science & Technology
基 金:国家市场监管总局科技项目(2021MK139)。
摘 要:电弧防护性能的预测关系着相关作业人员的人身安全问题。试验建立了ATPV值和EBT值的BP神经网络预测模型,探究不同的输入层节点个数、隐含层节点个数和训练次数对模型预测精确度的影响。通过BP网络模型试验验证,实测值和预测值的对比分析,BP模型预测的ATPV值与实际测试值的结果误差率小于5%,EBT值的BP模型预测值与实际测试值的结果变化趋势吻合度达到95%以上。试验结果显示,BP神经网络模型对于ATPV值和EBT值的预测准确度满足防电弧织物性能评价。The prediction of arc protection performance is related to the personal safety of relevant operators.A BP neural network prediction model with ATPV value and Er value was established,while the influence of different input layer node number,hidden layer node number and training times on the model prediction accuracy was explored.Through the BP network model test and the comparative analysis of the measured value and the predicted value,the error rate of the ATPV value predicted by the BP model and the actual test value is less than 5%,and the agreement of the predicted value of the BP model and the actual test value is more than 95%.The experimental results show that the prediction accuracy of BP neural network model for ATPV value and Eπvalue can satisfy the performance evaluation of anti arc fabric.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49