检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴巍 薛冰 刘丹丹 WU Wei;XUE Bing;LIU Dandan(School of Weapon Engineering,Naval University of Engineering,Wuhan 430032,China)
机构地区:[1]海军工程大学兵器工程学院,湖北武汉430032
出 处:《系统工程与电子技术》2024年第9期2935-2940,共6页Systems Engineering and Electronics
基 金:国家自然科学基金(62073334)资助课题。
摘 要:针对海杂波背景下末制导雷达容易出现错误检测的问题,开展海杂波抑制和鉴别研究。采用基于Tri-feature训练的目标鉴别分类算法,以目标幅度、峰值持续范围和起伏率作为特征量,核函数选择径向基函数(radial basis function,RBF)。RBF非线性映射能力强,在高维空间中可以更好地表达数据之间的关系,然后进行支撑向量机(support vector machine,SVM)目标鉴别分类器设计和实验数据验证。经公开的实测数据验证,所提算法准确率达到97%以上。通过与传统的模板匹配识别方法进行对比,基于Tri-feature训练的目标鉴别分类算法有更高的鉴别准确率,证明了所提方法的有效性和先进性。Focusing on the issue of error detection in terminal guidance radar under sea clutter background,research on sea clutter suppression and discrimination is conducted.The target identification and classification algorithm based on Tri-feature training is adopted,and the target amplitude,peak duration range and fluctuation rate are used as feature quantities.The radial basis function(RBF)is selected as the kernel function,which has strong nonlinear mapping ability and can better represent the relationship between data in high-dimensional space.Then,the support vector machine(SVM)target identification and classification classifier design and experimental data verification are carried out.Verified by publicly available measured data,the accuracy rate of the proposed algorithm has reached over 97%.Compared with the traditional template matching recognition method,the target identification and classification algorithm based on Tri-feature training has higher identification accuracy,which proves the effectiveness and progressiveness of the proposed method.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49