检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王丰 陈根浪 吴创 WANG Feng;CHEN Genlang;WU Chuang(School of Artificial Intelligence,Zhejiang Sci-Tech University,Hangzhou 310018,China;School of Computer and Data Engineering,NingboTech University,Ningbo 315100,China)
机构地区:[1]浙江理工大学人工智能学院,浙江杭州310018 [2]浙大宁波理工学院数据学院,浙江宁波315100
出 处:《软件工程》2024年第9期10-13,共4页Software Engineering
摘 要:中医实体识别是智能医学领域一项重要的基础任务,针对通用的实体识别模型忽略了中医实体之间强关联性的问题,文章提出了一种特征融合方法。以预训练BERT(Bidirectional Encoder Representation from Transformers)模型为基础,对输入信息进行特征提取后,进一步对每个实体特征与语句特征进行融合,以获得更丰富的上下文特征,进而增强模型对中医实体的提取能力。使用临床数据开展实验证明,该方法与其他模型相比,在草药和症状实体识别任务上获得了更高的F1分数,分别为94.90%和83.92%,能更准确有效地提取医案中的实体。Traditional Chinese Medicine(TCM)entity recognition is an important fundamental task in the field of intelligent medicine.Aiming at the problem that the general entity recognition model ignores the strong correlations between TCM entities,this paper proposes a feature fusion method.Based on the pre-trained BERT(Bidirectional Encoder Representations from Transformers)model,the method extracts features from the input information and further fuses each entity feature with statement features to obtain richer contextual features,thereby enhancing the model's ability to extract TCM entities.Experiments conducted on clinical data demonstrate that the method obtained higher F1 scores of 94.90%and 83.92%in the herb and symptom entity recognition tasks,compared to other models,allowing for more accurate and effective extraction of entities in medical cases.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49