检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵哲锋 梁雄伟 徐琛 张鑫 赵旭 ZHAO Zhefeng;LIANG Xiongwei;XU Chen;ZHANG Xin;ZHAO Xu(Silk Road Information Port Cloud Computing Technology Co.,Ltd.,Jinchang 737100)
机构地区:[1]丝路信息港云计算科技有限公司,金昌737100
出 处:《舰船电子工程》2024年第6期107-111,共5页Ship Electronic Engineering
摘 要:无线传感器网络(WSN)中的节点缺乏丰富的能量,因此能量效率是WSN数据传输的重要指标。WSN需要降低节点的能量消耗,从而提高数据传输的效率和可靠性,延长整个网络的生命周期。在这方面,需要寻找无线传感器网络中数据传输的最佳路径。针对这一问题,论文提出了一种基于改进蚁群算法的无线传感器网络节能路由算法。为了平衡节点间的能量消耗,采用剩余能量作为能量控制因子。控制因子不仅能影响网络生存时间,而且能提高数据传输效率。采用蚁群算法从簇头和汇聚节点之间的各种可用路由中寻找最优路径进行数据传输。仿真结果表明,改进的基于蚁群优化的低能自适应聚类层次算法比其他传统算法具有更好的聚类效果。Wireless Sensor Networks(WSNs)are characterized by nodes with limited energy resources,rendering energy efficiency a paramount consideration in data transmission.In WSNs,minimizing node energy consumption is crucial for enhancing the efficiency and reliability of data transmission,as well as prolonging the overall network lifespan.To address this challenge,this paper introduces an energy-efficient routing algorithm for WSNs based on an improved Ant Colony Optimization(ACO)approach.With the aim of balancing energy consumption among nodes,the algorithm incorporates residual energy as an energy control factor.This control factor not only impacts the network's lifetime but also bolsters the efficiency of data transmission.By employing the ACO algorithm,optimal paths are identified for data transmission between cluster heads and sink nodes from among various available routes.Simulation results demonstrate that the proposed improved ACO-based low-energy adaptive clustering hierarchy algorithm outperforms other conventional algorithms in terms of clustering effectiveness,thereby substantiating its potential in enhancing WSN performance while conserving precious energy resources.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.20.233.31