基于逃逸角的多ASV微分博弈协同围捕方法  

Cooperative Hunting Method for Multiple ASVs Using Differential Games Based on Escape Angle

在线阅读下载全文

作  者:杨惠珍[1,2] 李建国 吴天宇 王子江 杨钧 YANG Huizhen;LI Jianguo;WU Tianyu;WANG Zijiang;YANG Jun(School of Marine Science and Technology,Northwestern PolytechnicalUniversity,Xi’an710072,China;Underwater Information and Control Laboratory,Xi’an 710072,China)

机构地区:[1]西北工业大学航海学院,陕西西安710072 [2]水下信息与控制重点实验室,陕西西安710072

出  处:《水下无人系统学报》2024年第4期730-738,共9页Journal of Unmanned Undersea Systems

基  金:水下信息与控制重点实验室基金项目资助(2021-JCJQ-LB-030-03).

摘  要:针对多个自主水面航行器(ASV)围捕单个主动逃逸的对抗性目标问题,利用微分博弈理论建立了多ASV协同围捕问题博弈模型,在含有距离项的支付函数中引入由逃逸角构成的合围项,从而降低目标中途逃逸的概率;然后将围捕问题转换为求解可实现策略的优化问题,利用粒子群优化(PSO)算法求解满足纳什均衡的最优策略,仿真和湖上试验结果均证明了基于PSO的微分博弈围捕算法的有效性。In the scenario where multi-autonomous surface vehicles(ASVs)round up an actively escaped adversarial target,a game model of the multi-ASV cooperative hunting problem was established using differential game theory.A surround term consisting of the escape angle was introduced into the payment function which included the distance cost so that the escape probability of the target was reduced.At the same time,the hunting problem was converted into an optimization problem for solving achievable strategies,and the particle swarm optimization(PSO)algorithm was used to solve the optimal strategy that satisfied the Nash equilibrium.The simulation and lake test results show the effectiveness of the hunting algorithm based on differential game and PSO.

关 键 词:自主水面航行器 微分博弈 协同围捕 粒子群优化 

分 类 号:TJ630.1[兵器科学与技术—武器系统与运用工程] U664.82[交通运输工程—船舶及航道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象