检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王恒 王佼佼 Wang Heng;Wang Jiaojiao(WISDRI City Construction Engineering&Research Incorporation Ltd,Wuhan 430070,China)
机构地区:[1]中冶南方城市建设工程技术有限公司,武汉430070
出 处:《黑龙江科学》2024年第16期72-76,共5页Heilongjiang Science
摘 要:结合软土路基沉降观测值,分别从精度、安全性和预测期限等角度对双曲线模型、S型成长曲线模型和BP神经网络进行适用性分析。为了提高沉降预测精度、克服传统BP神经网络缺陷,采用LM优化算法改进BP神经网络,验证了LM算法的优越性,在此基础上建立了一种考虑趋势部分和随机部分的组合预测模型。该模型既符合路基沉降的发展规律,又能够充分利用BP神经网络的非线性外推能力,弥补趋势函数的精度下降。工程实例研究表明,该模型优于各单一预测模型,具有很好的预测效果,均方差为0.03,残差平方和为1.8,相关系数接近1。The applicability of some prediction models,such as hyperbolic model,S type growth curve model and BP neural network,is analyzed from the view of accuracy,safety and prediction term according to the settlement observation values of soft soil roadbed.In order to overcome the shortcomings of the traditional BP neural network and increase the prediction accuracy,LM optimization algorithm is used to improve the BP neural network.The superior of LM algorithm is verified,and a combination forecasting model taking the trend and the random parts into account is established.This model not only accords with the development rule of roadbed settlement,but also can make full use of the nonlinear extrapolation ability of BP neural network,which can make up the decline of the trend function.The engineering example shows that the model is superior to the single prediction model,and has better prediction effects:the MSE is only 0.03,the SSE is only 1.8,the correlation coefficient is almost 1.
关 键 词:沉降预测 BP神经网络 组合预测 LM算法 适用性
分 类 号:U416.16[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33