检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李振轩 黄敏儿 高飞[1] 陶庭叶[1] 吴兆福[1] 朱勇超 LI Zhenxuan;HUANG Miner;GAO Fei;TAO Tingye;WU Zhaofu;ZHU Yongchao(School of Civil and Hydraulic Engineering,Hefei University of Technology,Hefei 230009,China)
机构地区:[1]合肥工业大学土木与水利工程学院,安徽合肥230009
出 处:《测绘通报》2024年第8期26-30,共5页Bulletin of Surveying and Mapping
基 金:国家自然科学基金(42104019);安徽省自然科学基金(2208085QD105);中央高校基本科研务费专项资金(JZ2021HGTA0167)。
摘 要:目前,深度学习在高分辨率遥感影像水体提取方面的应用已成为遥感领域的研究热点。其中基于U-Net网络的算法在水体提取中表现出较好的性能,但鲜有研究对不同U-Net网络算法在水体提取任务中的性能差异进行深入比较。因此,本文选择U-Net、U-Net++和Attention-U-Net 3种卷积神经网络,基于GID数据集,进行试验与定量分析。结果表明:U-Net++的训练精度最高,其次为U-Net、Attention-U-Net,三者分别为0.912、0.907、0.899;U-Net++的边缘提取能力优于其他两种网络;在分割不同类型水体和区分遥感影像中与水体区域相似的非水体区域上,U-Net++的提取效果显著,U-Net和Attention-U-Net易出现漏提现象,效果欠佳。Currently,the application of deep learning in the extraction of water bodies from high-resolution remote sensing images has become a research hotspot in the remote sensing field.Among them,algorithms based on the U-Net network have demonstrated good performance in water body extraction.However,there is scarce research that provides in-depth and detailed comparisons of the performance differences of different U-Net network algorithms in water body extraction tasks.Therefore,this article selects three convolutional neural networks,named U-Net,U-Net++,and Attention-U-Net,and based on the GID dataset,draws conclusions through experiments and quantitative analysis.The results indicate that:U-Net++achieves the highest training accuracy,followed by U-Net and Attention-U-Net,with accuracies of 0.912,0.907,and 0.899 respectively.U-Net++exhibits superior edge extraction capability compared to the other two networks.In segmenting different types of water bodies and distinguishing non-water areas similar to water bodies in remote sensing images,U-Net++shows significantly better extraction results,while U-Net and Attention-U-Net are prone to omission errors and exhibit suboptimal performance.
分 类 号:P237[天文地球—摄影测量与遥感]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249