检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈鸿生 林小刚[1,2] 林晓珍 CHEN Hongsheng;LIN Xiaogang;LIN Xiaozhen(Key Laboratory of Marine Environmental Survey Technology and Application,Ministry of Natural Resources,Guangzhou 510301,China;Shanwei Marine Environmental Monitoring Center,State Oceanic Administration,Shanwei 516600,China;Shenzhen Marine Environmental Monitoring Center,State Oceanic Administration,Shenzhen 518000,China)
机构地区:[1]自然资源部海洋环境探测技术与应用重点实验室,广东广州510301 [2]国家海洋局汕尾海洋环境监测中心站,广东汕尾516600 [3]国家海洋局深圳海洋环境监测中心站,广东深圳518000
出 处:《海洋预报》2024年第4期1-10,共10页Marine Forecasts
基 金:自然资源部海洋环境探测技术与应用重点实验室自主设立课题(MESTA-2022-D008)。
摘 要:利用长短期记忆神经网络和数值模式相结合的方法,设计了两套针对粤东遮浪海洋站点台风风暴潮增水的预报优化方案。与实测资料对比结果显示,长短期记忆神经网络方法可以显著改善数值模式模拟结果的准确性,最大增水和主振过程中增水后报结果的平均绝对误差、平均相对误差和平均改善幅度分别为7.1 cm、8.2%、74%和16.1 cm、34.7%、33%。进一步分析表明,利用台风信息预测数值模拟结果的订正值可以有效改善神经网络方法的不稳定性,比直接预测风暴潮增水值更加准确、可靠。Using a combination of Long Short-Term Memory(LSTM)neural network and numerical model,two sets of prediction schemes for typhoon storm surge at the Zhelang marine station in eastern Guangdong have been designed.Compared with the measured data,the LSTM neural network can significantly improve the accuracy of the numerical model results.The average absolute error,average relative error and average improvement amplitude of the prediction results for the maximum surge and the main oscillation process are 7.1 cm,8.2%,74%and 16.1 cm,34.7%,33%,respectively.Further analysis shows that predicting the corrected value of numerical results using typhoon information can effectively limit the instability of neural network,which is more accurate and reliable in comparison with predicting the storm surge level directly.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.128.226.211